2019届二轮复习第九章第8节 曲线与方程学案(全国通用)
展开
第8节 曲线与方程
最新考纲 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.
知 识 梳 理
1.曲线与方程的定义
一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
2.求动点的轨迹方程的基本步骤
[常用结论与微点提醒]
1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.
2.曲线的交点与方程组的关系:
(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;
(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( )
(2)方程x2+xy=x的曲线是一个点和一条直线.( )
(3)动点的轨迹方程和动点的轨迹是一样的.( )
(4)方程y=与x=y2表示同一曲线.( )
解析 对于(2),由方程得x(x+y-1)=0,即x=0或x+y-1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y=是曲线x=y2的一部分,错误.
答案 (1)√ (2)× (3)× (4)×
2.已知M(-1,0),N(1,0),|PM|-|PN|=2,则动点P的轨迹是( )
A.双曲线 B.双曲线左支
C.一条射线 D.双曲线右支
解析 由于|PM|-|PN|=|MN|,所以D不正确,应为以N为端点,沿x轴正向的一条射线.
答案 C
3.(2018·广州调研)方程(2x+3y-1)(-1)=0表示的曲线是( )
A.两条直线 B.两条射线
C.两条线段 D.一条直线和一条射线
解析 原方程可化为或-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条射线和一条直线.
答案 D
4.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是( )
A.(x+2)2+y2=4(y≠0) B.(x+1)2+y2=1(y≠0)
C.(x-2)2+y2=4(y≠0) D.(x-1)2+y2=1(y≠0)
解析 由角的平分线性质定理得|PA|=2|PB|,设P(x,y),则=2,整理得(x-2)2+y2=4(y≠0),故选C.
答案 C
5.过椭圆+=1(a>b>0)上任意一点M作x轴的垂线,垂足为N,则线段MN中点的轨迹方程是 .
解析 设MN的中点为P(x,y),
则点M(x,2y)在椭圆上,∴+=1,
即+=1(a>b>0).
答案 +=1(a>b>0)
考点一 直接法求轨迹方程
【例1】 (1)(2018·豫北名校联考)已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|=3,则顶点A的轨迹方程为 .
(2)(2018·大同模拟)与y轴相切并与圆C:x2+y2-6x=0也外切的圆的圆心的轨迹方程为 .
解析 (1)设A(x,y),由题意可知D.又∵|CD|=3,∴+=9,即(x-10)2+y2=36,由于A,B,C三点不共线,∴点A不能落在x轴上,即y≠0,∴点A的轨迹方程为(x-10)2+y2=36(y≠0).
(2)若动圆在y轴右侧,设与y轴相切,且与圆x2+y2-6x=0外切的圆的圆心为P(x,y)(x>0),则半径长为|x|,因为圆x2+y2-6x=0的圆心为(3,0),所以=|x|+3,则y2=12x(x>0),
若动圆在y轴左侧,则y=0,即圆心的轨迹方程为y2=12x(x>0)或y=0(x0)或y=0(x3)
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2018·长沙月考)若方程x2+=1(a是常数),则下列结论正确的是( )
A.任意实数a方程表示椭圆
B.存在实数a方程表示椭圆
C.任意实数a方程表示双曲线
D.存在实数a方程表示抛物线
解析 当a>0且a≠1时,方程表示椭圆,故选B.
答案 B
2.若M,N为两个定点,且|MN|=6,动点P满足·=0,则P点的轨迹是( )
A.圆 B.椭圆
C.双曲线 D.抛物线
解析 以线段MN的中点为原点(0,0),以MN所在的直线为x轴,建立平面直角坐标系,则M(-3,0),N(3,0).
设P(x,y),则·=(-3-x,-y)·(3-x,-y)=x2+y2-9=0,即x2+y2=9,则P点的轨迹是以(0,0)为圆心,以3为半径的圆.
答案 A
3.已知点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线的中点的轨迹方程是( )
A.y2=2x B.y2=8x2
C.y=4x2- D.y=4x2+
解析 设AP的中点坐标为(x,y),则P(2x,2y+1),由点P在曲线上,得2·(2x)2-(2y+1)=0,即y=4x2-.
答案 C
4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为( )
A.y2=2x B.(x-1)2+y2=4
C.y2=-2x D.(x-1)2+y2=2
解析 如图,设P(x,y),圆心为M(1,0).连接MA,PM,则MA⊥PA,且|MA|=1,
又因为|PA|=1,
所以|PM|==,
即|PM|2=2,
所以(x-1)2+y2=2.
答案 D
5.(2018·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1
C.-=1 D.+=1
解析 ∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆.
∴a=,∴c=1,则b2=a2-c2=,
∴M的轨迹方程为+=1.
答案 D
二、填空题
6.已知点O(0,0),A(1,2),动点P满足|+|=2,则点P的轨迹方程为 .
解析 设点P的坐标为(x,y),则=(x,y),=(x-1,y-2),+=(2x-1,2y-2),所以(2x-1)2+(2y-2)2=4,整理可得4x2+4y2-4x-8y+1=0.
答案 4x2+4y2-4x-8y+1=0
7.直线+=1与x,y轴交点的连线的中点的轨迹方程是 .
解析 设直线+=1与x,y轴的交点分别为A(a,0),B(0,2-a),AB中点为M(x,y),则x=,y=1-,消去a,得x+y=1,因为a≠0,a≠2,所以x≠0,x≠1.
答案 x+y=1(x≠0,x≠1)
8.在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为 .
解析 以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E,F分别为两个切点.
则|BE|=|BD|,|CD|=|CF|,
|AE|=|AF|.
∴|AB|-|AC|=2<|BC|=4,
∴点A的轨迹是以B,C为焦点的双曲线的右支(y≠0)且a=,c=2,∴b=,
∴轨迹方程为-=1(x>).
答案 -=1(x>)
三、解答题
9.如图所示,动圆C1:x2+y2=t2,1