2019届二轮复习(理)专题58离散型随机变量及分布列学案(全国通用)
展开
1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.2.了解超几何分布,并能进行简单的应用. 1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量. (2)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则称表Xx1x2…xi…xnPp1p2…pi…pn 为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.两点分布如果随机变量X的分布列为X01P1-pp其中0<p<1,则称离散型随机变量X服从两点分布.其中p=P(X=1)称为成功概率.3.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=k)= (k=0,1,2,…,m).即X01…mP…其中m=min{M,n},且n≤N,M≤N,n,M,N∈N .如果一个随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.高频考点一 离散型随机变量的分布列的性质 例1.离散型随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P的值为( )A. B. C. D.答案 D【变式探究】设离散型随机变量X的分布列为X01234P0.20.10.10.3m求2X+1的分布列.解 由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.列表为X012342X+113579从而2X+1的分布列为2X+113579P0.20.10.10.30.3高频考点二 离散型随机变量的分布列的求法例2、在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列. (2)由题意知,X可取的值为0,1,2,3,4,则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.因此X的分布列为X01234P【变式探究】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(2)X的可能取值为200,300,400.P(X=200)==,P(X=300)==,P(X=400)=1-P(X=200)-P(X=300)=1--=. 故X的分布列为X200300400P高频考点三 与独立事件(或独立重复试验)有关的分布列的求法例3、设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完.(1)求他前两发子弹只命中一发的概率;(2)求他所耗用的子弹数X的分布列.解 记“第k发子弹命中目标”为事件Ak,则A1,A2,A3,A4,A5相互独立,且P(Ak)=,P(k)=,k=1,2,3,4,5.方法二 由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为P=C××=.(2)X的所有可能值为2,3,4,5.P(X=2)=P(A1A2)+P(1 2)=×+×=,P(X=3)=P(A12 3)+P(1A2A3)=×2+×2=,P(X=4)=P(A12A3A4)+P(1A23 4)=3×+3×=,P(X=5)=P(A12A34)+P(1A23A4)=2×2+2×2=.故X的分布列为 X2345P【方法技巧】求离散型随机变量X的分布列的步骤(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列.【变式探究】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.(1)求你的幸运数字为3的概率;(2)若k=1,则你的得分为6分;若k=2,则你的得分为4分;若k=3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的分布列.解 (1)设“连续抛掷3次骰子,和为6”为事件A,则它包含事件A1,A2,A3,其中A1:三次恰好均为2;A2:三次中恰好为1,2,3各一次;A3:三次中有两次均为1,一次为4.A1,A2,A3为互斥事件,则P(A)=P(A1)+P(A2)+P(A3)=C3+C··C··C·+C2·=.(2)由已知得ξ的可能取值为6,4,2,0,P(ξ=6)=,P(ξ=4)=2+2×C××=,P(ξ=2)=,P(ξ=0)=1---=.故ξ的分布列为ξ6420P ]高频考点四 超几何分布例4、某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.解 (1)设事件A:选派的3人中恰有2人会法语,则P(A)==. X0123P【感悟提升】(1)超几何分布的两个特点①超几何分布是不放回抽样问题;②随机变量为抽到的某类个体的个数.(2)超几何分布的应用条件 ]①两类不同的物品(或人、事);②已知各类对象的个数;③从中抽取若干个个体.【变式探究】PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2017年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米)[25,35)[35,45)[45,55)[55,65)[65,75)[75,85]频数311113 (1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)==.ξ012 学 ]3P1. (2018年天津卷) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).学 . 所以,随机变量X的分布列为X0123P随机变量X的数学期望.1. (2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.解 (1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(2)由题意知,X可取的值为0,1,2,3,4,则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.学 . 因此X的分布列为X01234P ]