还剩29页未读,
继续阅读
2019届二轮复习 函数的图像与性质 学案 (全国通用)
展开
函数单调性的判断和应用及函数的奇偶性、周期性的应用,识图用图是高考的热点,题型既有选择题、填空题,又有解答题,与函数的概念、图象、性质综合在一起考查.
预计2018年高考仍将综合考查函数性质,并能结合函数图象的特点,对各个性质进行综合运用,另外函数的性质还常常与向量、不等式、三角函数、导数等知识相结合,所以在备考过程中应加强这方面的训练.
1.函数
(1)映射:集合A(A中任意x)集合B(B中有唯一y与A中的x对应).
(2)函数:非空数集A―→非空数集B的映射,其三要素:定义域A、值域C(C⊆B)、对应法则f.
①求函数定义域的主要依据:
(Ⅰ)分式的分母不为零;学——
(Ⅱ)偶次方根被开方数不小于零;
(Ⅲ)对数函数的真数必须大于零;
(Ⅳ)指数函数和对数函数的底数必须大于零且不等于1;
(Ⅴ)正切函数y=tanx中,x的取值范围是x∈R,且x≠kπ+,k∈ .
②求函数值域的方法:无论用什么方法求值域,都要优先考虑定义域,常用的方法有基本函数法、配方法、换元法、不等式法、函数的单调性法、函数的有界性法、导数法.
③函数图象在x轴上的正投影对应函数的定义域;函数图象在y轴上的正投影对应函数的值域.
2.函数的性质
(1)函数的奇偶性
如果对于函数y=f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
(2)函数的单调性
函数的单调性是函数的又一个重要性质.给定区间D上的函数f(x),若对于任意x1、x2∈D,当x10(f ′(x)
相关资料
更多