2020届二轮复习小题考法——导数的简单应用课时作业(全国通用)
展开
课时跟踪检测(二十一) 小题考法——导数的简单应用
A组——10+7提速练
一、选择题
1.设f(x)=xln x,f′(x0)=2,则x0=( )
A.e2 B.e
C. D.ln 2
解析:选B ∵f′(x)=1+ln x,∴f′(x0)=1+ln x0=2,∴x0=e,故选B.
2.函数f(x)=excos x的图象在点(0,f(0))处的切线方程是( )
A.x+y+1=0 B.x+y-1=0
C.x-y+1=0 D.x-y-1=0
解析:选C 依题意,f(0)=e0cos 0=1,因为f′(x)=excos x-exsin x,所以f′(0)=1,所以切线方程为y-1=x-0,即x-y+1=0,故选C.
3.已知f(x)=,则( )
A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)
C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)
解析:选D f(x)的定义域是(0,+∞),
∵f′(x)=,
∴x∈(0,e),f′(x)>0;
x∈(e,+∞),f′(x)f(3)>f(2),故选D.
4.已知函数f(x)的定义域为(a,b),f(x)的导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( )
A.1 B.2
C.3 D.4
解析:选B 由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点,其余的3个交点都是极值点,其中有2个点附近的导数值左正右负,故极大值点有2个.
5.已知函数f(x)=x2-5x+2ln x,则函数f(x)的单调递增区间是( )
A.和(1,+∞) B.(0,1)和(2,+∞)
C.和(2,+∞) D.(1,2)
解析:选C 函数f(x)=x2-5x+2ln x的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得00),h(x)在区间(0,+∞)上是增函数,h(x)的值域是(0,+∞),因此-m≤0,m≥0.故所求实数m的取值范围是[0,+∞).
答案:[0,+∞)
16.设函数f(x)=
(1)若a=0,则f(x)的最大值为________;
(2)若f(x)无最大值,则实数a的取值范围是________.
解析:由当x≤a时,由f′(x)=3x2-3=0,得x=±1.
如图是函数y=x3-3x与y=-2x在没有限制条件时的图象.
①若a=0,则f(x)max=f(-1)=2.
②当a≥-1时,f(x)有最大值;
当aa时无最大值,且-2a>(x3-3x)max,所以a|f(x1)-f(x2)|成立,则实数a的取值范围是________.
解析:∵f(x)=3mx--(3+m)ln x,∴f′(x)=,当x∈[1,3],m∈(4,5)时,f′(x)>0,f(x)在[1,3]上单调递增,∴|f(x1)-f(x2)|≤f(3)-f(1)=6m+-(3+m)ln 3,
∴(a-ln 3)m-3ln 3>6m+-(3+m)ln 3,∴a>6+.∵y=6+在m∈(4,5)上单调递减,∴