2020届二轮复习小题考法——平面向量课时作业(全国通用)
展开
课时跟踪检测(一) 小题考法——平面向量
A组——10+7提速练
一、选择题
1.已知平面向量a=(3,4),b=,若a∥b,则实数x为( )
A.- B.
C. D.-
解析:选C ∵a∥b,∴3×=4x,解得x=,故选C.
2.(2019届高三·杭州六校联考)已知向量a和b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=( )
A.9 B.10
C.12 D.13
解析:选D ∵向量a和b的夹角为120°,
且|a|=2,|b|=5,
∴a·b=2×5×cos 120°=-5,
∴(2a-b)·a=2a2-a·b=2×4+5=13,
故选D.
3.(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.- B.-
C.+ D.+
解析:选A 作出示意图如图所示.=+=+=×(+)+(-)=-.故选A.
4.设向量a=(-2,1),a+b=(m,-3),c=(3,1),若(a+b)⊥c,则cos〈a,b〉=( )
A.- B.
C. D.-
解析:选D 由(a+b)⊥c可得,m×3+(-3)×1=0,解得m=1.所以a+b=(1,-3),故b=(a+b)-a=(3,-4).
所以cos〈a,b〉===-,故选D.
5.P是△ABC所在平面上一点,满足|-|-|+-2|=0,则△ABC的形状是( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等边三角形
解析:选B ∵P是△ABC所在平面上一点,且|-|-|+-2|=0,
∴||-|(-)+(-)|=0,
即||=|+|,
∴|-|=|+|,
两边平方并化简得·=0,
∴⊥,∴∠A=90°,
则△ABC是直角三角形.
6.(2018·浙江二模)如图,设A,B是半径为2的圆O上的两个动点,点C为AO中点,则·的取值范围是( )
A.[-1,3] B.[1,3]
C.[-3,-1] D.[-3,1]
解析:选A 建立平面直角坐标系如图所示,
可得O(0,0),A(-2,0),C(-1,0),设B(2cos θ,2sin θ).θ∈[0,2π).
则·=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].
故选A.
7.(2019届高三·浙江名校联考)已知在△ABC中,AB=4,AC=2,AC⊥BC,D为AB的中点,点P满足=+,则·(+)的最小值为( )
A.-2 B.-
C.- D.-
解析:选C 由=+知点P在直线CD上,以点C为坐标原点,CB所在直线为x轴,CA所在直线为y轴建立如图所示的平面直角坐标系,则C(0,0),A(0,2),B(2,0),D(,1),∴直线CD的方程为y=x,设P,则=,=,=,∴+=,∴·(+)=-x(2-2x)+x2-x=x2-x=2-,∴当x=时,·(+)取得最小值-.
8.已知单位向量a,b,c是共面向量,a·b=,a·c=b·c