开学活动
搜索
    上传资料 赚现金

    2020届二轮复习椭圆、双曲线、抛物线教案(全国通用)

    2020届二轮复习椭圆、双曲线、抛物线教案(全国通用)第1页
    2020届二轮复习椭圆、双曲线、抛物线教案(全国通用)第2页
    2020届二轮复习椭圆、双曲线、抛物线教案(全国通用)第3页
    还剩67页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届二轮复习椭圆、双曲线、抛物线教案(全国通用)

    展开

    2020届二轮复习 椭圆、双曲线、抛物线 教案(全国通用)
    一、椭圆、双曲线、抛物线的定义及几何性质

    椭圆
    双曲线
    抛物线
    定义
    |PF1|+|PF2|=2a(2a>|F1F2|)
    ||PF1|-|PF2||=2a(2ab>0)
    焦点在x轴上
    -=1(a>0,b>0)
    焦点在x轴正半轴上y2=2px(p>0)
    图象



    几何性质
    范围
    |x|≤a,|y|≤b[来源:]
    |x|≥a,y∈R[来源:学#科#网Z#X#X#K][来源:]
    x≥0,y∈R
    顶点
    (±a,0),(0,±b)
    (±a,0)
    (0,0)
    对称性
    关于x轴、y轴和原点对称
    关于x轴对称
    焦点
    (±c,0)


    长轴长2a,短轴长2b
    实轴长2a,虚轴长2b

    离心率
    e==(0b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
    (I)求椭圆的方程;
    (II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
    【答案】(Ⅰ);(Ⅱ)或
    【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,
    又由a2=b2+c2,可得2a=3b.由已知可得,,,
    由,可得ab=6,从而a=3,b=2.
    所以,椭圆的方程为.
    (Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).
    由已知有y1>y2>0,故.
    又因为,而∠OAB=,故.
    由,可得5y1=9y2.
    由方程组消去x,可得.
    易知直线AB的方程为x+y–2=0,
    由方程组消去x,可得.
    由5y1=9y2,可得5(k+1)=,
    两边平方,整理得,
    解得,或.
    所以,k的值为或
    【变式探究】(2017·北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.
    (1)求椭圆C的方程;
    (2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.学=科网
    (1)解:设椭圆C的方程为+=1(a>b>0),
    由题意得解得c=,
    所以b2=a2-c2=1,
    所以椭圆C的方程为+y2=1.
    (2)设M(m,n),则D(m,0),N(m,-n),
    由题设知m≠±2,且n≠0.
    直线AM的斜率kAM=,
    故直线DE的斜率kDE=-,
    所以直线DE的方程为y=-(x-m),
    直线BN的方程为y=(x-2).
    联立解得点E的纵坐标yE=-.
    由点M在椭圆C上,得4-m2=4n2,所以yE=-n.
    又S△BDE=|BD|·|yE|=|BD|·|n|,
    S△BDN=|BD|·|n|,
    所以△BDE与△BDN的面积之比为4∶5.
    【变式探究】已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
    A.m>n且e1e2>1 B.m>n且e1e20),则,
    由可得:,
    不妨设:,
    双曲线的一条渐近线方程为:,
    据此可得:,,
    则,则,
    双曲线的离心率:,
    据此可得:,则双曲线的方程为.
    本题选择C选项.
    【变式探究】(2017·全国卷Ⅱ)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为(  )
    A.2 B.
    C. D.
    解析:取渐近线y=x,化成一般式bx-ay=0,圆心(2,0)到直线的距离为=,
    又由c2=a2+b2得c2=4a2,e2=4,e=2.
    答案:A
    【变式探究】已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
    (A)(B)(C)(D)
    【答案】D
    【解析】根据对称性,不妨设A在第一象限,,∴,
    ∴,故双曲线的方程为,故选D.
    【变式探究】若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于(  )
    A.11 B.9 C.5 D.3
    解析 由双曲线定义||PF2|-|PF1||=2a,∵|PF1|=3,∴P在左支上,∵a=3,∴|PF2|-|PF1|=6,∴|PF2|=9,故选B.
    答案 B
    高频考点四 双曲线的几何性质
    例4.(2018年全国I卷理数)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
    A. B. 3 C. D. 4
    【答案】B
    【解析】根据题意,可知其渐近线的斜率为,且右焦点为,
    从而得到,所以直线的倾斜角为或,
    根据双曲线的对称性,设其倾斜角为,
    可以得出直线的方程为,
    分别与两条渐近线和联立,
    求得,
    所以,故选B.
    【变式探究】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
    (A) (B) (C) (D)
    【答案】A
    【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
    【变式探究】已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为(  )学科=网
    A. B.2 C. D.
    解析 如图,设双曲线E的方程为-=1(a>0,b>0),则|AB|=2a,由双曲线的对称性,可设点M(x1,y1)在第一象限内,过M作MN⊥x轴于点N(x1,0),∵△ABM为等腰三角形,且∠ABM=120°,∴|BM|=|AB|=2a,∠MBN=60°,∴y1=|MN|=|BM|sin∠MBN=2asin 60°=a,x1=|OB|+|BN|=a+2acos 60°=2a.将点M(x1,y1)的坐标代入-=1,可得a2=b2,∴e===,选D.

    答案 D
    高频考点五 抛物线的定义及方程
    例5.(2018年全国I卷理数)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
    A. 5 B. 6 C. 7 D. 8
    【答案】D
    【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.
    【变式探究】(2017·全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为(  )
    A. B.2
    C.2 D.3

    【变式探究】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )
    (A) (B) (C) (D)1
    【答案】C
    【解析】设(不妨设),则
    ,故选C.
    【变式探究】过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点,若|AF|=3,则△AOB的面积为(  )
    A. B. C. D.2
    解析 设点A(x1,y1),B(x2,y2),
    由|AF|=3及抛物线定义可得,x1+1=3,∴x1=2.
    ∴A点坐标为(2,2),则直线AB的斜率
    k==2.
    ∴直线AB的方程为y=2(x-1),
    即为2x-y-2=0,
    则点O到该直线的距离为d=.

    消去y得,2x2-5x+2=0,
    解得x1=2,x2=.∴|BF|=x2+1=,
    ∴|AB|=3+=.∴S△AOB=|AB|·d
    =××=.学-科网
    答案 C
    高频考点六 抛物线的几何性质
    例6.(2018年浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.

    (Ⅰ)设AB中点为M,证明:PM垂直于y轴;
    (Ⅱ)若P是半椭圆x2+=1(x0),则,
    由可得:,
    不妨设:,
    双曲线的一条渐近线方程为:,
    据此可得:,,
    则,则,
    双曲线的离心率:,
    据此可得:,则双曲线的方程为.
    本题选择C选项.
    3. (2018年全国I卷理数)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
    A. B. 3 C. D. 4
    【答案】B
    【解析】根据题意,可知其渐近线的斜率为,且右焦点为,
    从而得到,所以直线的倾斜角为或,
    根据双曲线的对称性,设其倾斜角为,
    可以得出直线的方程为,
    分别与两条渐近线和联立,
    求得,
    所以,故选B.
    4. (2018年全国Ⅲ卷理数)设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为
    A. B. 2 C. D.
    【答案】C

    5. (2018年全国Ⅱ卷理数)双曲线的离心率为,则其渐近线方程为
    A. B. C. D.
    【答案】A
    【解析】因为渐近线方程为,所以渐近线方程为,选A.
    6. (2018年江苏卷)在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.
    【答案】2
    【解析】先确定双曲线的焦点到渐近线的距离,再根据条件求离心率。因为双曲线的焦点到渐近线即的距离为所以,因此
    7. (2018年全国Ⅱ卷理数)已知,是椭圆的左,右焦点,A是C的左顶点,点P在过A且斜率为的直线上,为等腰三角形,,则C的离心率为
    A. B. C. D.
    【答案】D
    【解析】因为为等腰三角形,,所以PF2=F1F2=2c,
    由AP斜率为得,,
    由正弦定理得,
    所以,选D.
    8. (2018年浙江卷)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.
    【答案】5
    【解析】设,由得
    因为A,B在椭圆上,所以

    与对应相减得,当且仅当时取最大值.
    9. (2018年北京卷)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.
    【答案】 (1). (2). 2
    【解析】由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为
    双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,
    10. (2018年天津卷)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
    (I)求椭圆的方程;
    (II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
    【答案】(Ⅰ);(Ⅱ)或
    【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,
    又由a2=b2+c2,可得2a=3b.由已知可得,,,
    由,可得ab=6,从而a=3,b=2.
    所以,椭圆的方程为.
    (Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).
    由已知有y1>y2>0,故.
    又因为,而∠OAB=,故.
    由,可得5y1=9y2.
    由方程组消去x,可得.
    易知直线AB的方程为x+y–2=0,
    由方程组消去x,可得.
    由5y1=9y2,可得5(k+1)=,
    两边平方,整理得,
    解得,或.
    所以,k的值为或
    11. (2018年江苏卷)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.

    (1)求椭圆C及圆O的方程;
    (2)设直线l与圆O相切于第一象限内的点P.
    ①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
    ②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
    【答案】(1)椭圆C的方程为;圆O的方程为
    (2)①点P的坐标为;②直线l的方程为

    (2)①设直线l与圆O相切于,则,
    所以直线l的方程为,即.
    由,消去y,得
    .(*)
    因为直线l与椭圆C有且只有一个公共点,
    所以.
    因为,所以.
    因此,点P的坐标为.
    ②因为三角形OAB的面积为,所以,从而.
    设,
    由(*)得,
    所以

    因为,
    所以,即,
    解得舍去),则,因此P的坐标为.
    综上,直线l的方程为.

    12. (2018年全国I卷理数)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
    (1)当与轴垂直时,求直线的方程;
    (2)设为坐标原点,证明:.
    【答案】(1) AM的方程为或.
    (2)证明见解析.
    【解析】
    (1)由已知得,l的方程为x=1.
    由已知可得,点A的坐标为或.
    所以AM的方程为或.
    (2)当l与x轴重合时,.
    当l与x轴垂直时,OM为AB的垂直平分线,所以.
    当l与x轴不重合也不垂直时,设l的方程为,,
    则,直线MA,MB的斜率之和为.
    由得
    .
    将代入得
    .
    所以,.
    则.
    从而,故MA,MB的倾斜角互补,所以.
    综上,.
    13. (2018年全国Ⅲ卷理数)已知斜率为的直线与椭圆交于,两点,线段的中点为.
    (1)证明:;
    (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.
    【答案】(1)
    (2)或
    【解析】(1)设,则.
    两式相减,并由得
    .
    由题设知,于是
    .①
    由题设得,故.
    (2)由题意得,设,则
    .
    由(1)及题设得.
    又点P在C上,所以,从而,.
    于是
    .
    同理.
    所以.
    故,即成等差数列.
    设该数列的公差为d,则
    .②
    将代入①得.
    所以l的方程为,代入C的方程,并整理得.
    故,代入②解得.
    所以该数列的公差为或.
    14. (2018年全国I卷理数)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
    A. 5 B. 6 C. 7 D. 8
    【答案】D
    【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.
    15. (2018年全国Ⅲ卷理数)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.
    【答案】2
    【解析】设

    所以
    所以
    取AB中点,分别过点A,B作准线的垂线,垂足分别为
    因为,

    因为M’为AB中点,
    所以MM’平行于x轴
    因为M(-1,1)
    所以,则即
    故答案为2.
    16. (2018年浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.

    (Ⅰ)设AB中点为M,证明:PM垂直于y轴;
    (Ⅱ)若P是半椭圆x2+=1(xb>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.
    (1)求C的方程;
    (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
    【答案】(1).(2)见解析。
    【解析】(1)由于, 两点关于y轴对称,故由题设知C经过, 两点.
    又由知,C不经过点P1,所以点P2在C上.
    因此,解得.
    故C的方程为.
    (2)设直线P2A与直线P2B的斜率分别为k1,k2,
    如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ).
    则,得,不符合题设.
    从而可设l: ().将代入得

    由题设可知.
    设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.


    .
    由题设,故.
    即.
    解得.
    当且仅当时, ,欲使l:,即,
    所以l过定点(2, )
    11.【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。
    (1) 求点P的轨迹方程;
    (2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。
    【答案】(1) 。(2)证明略。
    【解析】(1)设P(x,y),M(),则N(),
    由得.
    因为M()在C上,所以.
    因此点P的轨迹为.
    由题意知F(-1,0),设Q(-3,t),P(m,n),则

    .
    由得-3m-+tn-=1, 又由(1)知,故
    3+3m-tn=0.
    所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
    12.【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.

    【答案】(I).
    (Ⅱ)的最大值为,取得最大值时直线的斜率为.
    【解析】
    (I)由题意知 , ,
    所以,
    因此 椭圆的方程为.
    (Ⅱ)设,
    联立方程
    得,
    由题意知,
    且,
    所以.
    由题意可知圆的半径为
    由题设知,
    所以
    因此直线的方程为.
    联立方程
    得,
    因此.
    由题意可知,


    令,
    则,
    因此,
    当且仅当,即时等号成立,此时,
    所以,
    因此,
    所以 最大值为.
    综上所述: 的最大值为,取得最大值时直线的斜率为.
    13.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
    (Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
    (Ⅱ)求证:A为线段BM的中点.学科=网
    【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.
    【解析】
    (Ⅰ)由抛物线C: 过点P(1,1),得.
    所以抛物线C的方程为.
    抛物线C的焦点坐标为(,0),准线方程为.
    (Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .
    由,得.
    则, .
    因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.
    直线ON的方程为,点B的坐标为.
    因为





    所以.
    故A为线段BM的中点.
    14.【2017天津,理19】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.
    (I)求椭圆的方程和抛物线的方程;
    (II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
    【答案】(Ⅰ), .(Ⅱ),或.
    【解析】
    (Ⅰ)解:设的坐标为.依题意, , , ,解得, , ,于是.所以,椭圆的方程为,抛物线的方程为.
    (Ⅱ)解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可学*科.网得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.
    所以,直线的方程为,或.
    15.【2017江苏,8】 在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,,其焦点是,则四边形的面积是 ▲ .
    【答案】
    【解析】右准线方程为,渐近线方程为,设,则,, ,则.
    16.【2017江苏,17】 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.
    (1)求椭圆的标准方程;
    (2)若直线的交点在椭圆上,求点的坐标.

    【答案】(1)(2)
    【解析】(1)设椭圆的半焦距为c.
    因为椭圆E的离心率为,两准线之间的距离为8,所以, ,
    解得,于是,
    因此椭圆E的标准方程是.
    (2)由(1)知, , .
    设,因为点为第一象限的点,故.
    当时, 与相交于,与题设不符.
    当时,直线的斜率为,直线的斜率为.
    因为, ,所以直线的斜率为,直线的斜率为,
    从而直线的方程:, ①
    直线的方程:. ②
    由①②,解得,所以.
    因为点在椭圆上,由对称性,得,即或.
    又在椭圆E上,故.
    由,解得;,无解.
    因此点P的坐标为.
    1. 【2016高考新课标1卷】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
    (A) (B) (C) (D)
    【答案】A
    【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
    2.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )
    (A) (B) (C) (D)1
    【答案】C
    【解析】设(不妨设),则
    ,故选C.
    3.【2016高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为( )
    (A) (B) (C) (D)2
    【答案】A
    【解析】因为垂直于轴,所以,因为,即,化简得,故双曲线离心率.选A.
    4.【2016高考浙江理数】已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
    A.m>n且e1e2>1 B.m>n且e1e2

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map