![2020届二轮复习集合与简单逻辑教案(全国通用)第1页](http://www.enxinlong.com/img-preview/3/3/5680485/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届二轮复习集合与简单逻辑教案(全国通用)第2页](http://www.enxinlong.com/img-preview/3/3/5680485/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届二轮复习集合与简单逻辑教案(全国通用)第3页](http://www.enxinlong.com/img-preview/3/3/5680485/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020届二轮复习集合与简单逻辑教案(全国通用)
展开
2020届二轮复习 集合与简单逻辑 教案(全国通用)
1.集合的概念、运算和性质
(1)集合的表示法:列举法,描述法,图示法.
(2)集合的运算:
①交集:A∩B={x|x∈A,且x∈B}.
②并集:A∪B={x|x∈A,或x∈B}.
③补集:∁UA={x|x∈U,且x∉A}.
(3)集合的关系:子集,真子集,集合相等.
(4)需要特别注意的运算性质和结论.
经验证,对于每组中两个元素α,β,均有M(α,β)=1.
所以每组中的两个元素不可能同时是集合B的元素.
所以集合B中元素的个数不超过4.
又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,
所以集合B中元素个数的最大值为4.
(Ⅲ)设Sk=( x1,x 2,…,xn)|( x1,x 2,…,xn)∈A,xk =1,x1=x2=…=xk–1=0)(k=1,2,…,n),
Sn+1={( x1,x 2,…,xn)| x1=x2=…=xn=0},
则A=S1∪S1∪…∪Sn+1.
对于Sk(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.
所以Sk(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.
所以B中元素的个数不超过n+1.
取ek=( x1,x 2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n–1).
令B=(e1,e2,…,en–1)∪Sn∪Sn+1,则集合B的元素个数为n+1,且满足条件.
故B是一个满足条件且元素个数最多的集合.
10.(2018年浙江卷)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】A
【解析】因为,所以根据线面平行的判定定理得,由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.
11. (2018年天津卷)设,则“”是“”的
A. 充分而不必要条件
B. 必要而不重复条件
C. 充要条件
D. 既不充分也不必要条件
【答案】A
【解析】绝对值不等式 ,
由 .
据此可知是的充分而不必要条件.
本题选择A选项.
12. (2018年北京卷)设a,b均为单位向量,则“”是“a⊥b”的
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】C
【解析】,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.
13. (2018年北京卷)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.
【答案】y=sinx(答案不唯一)
【解析】令,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数。又如,令f(x)=sinx,则f(0)=0,f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.
1.【2017课标1,理1】已知集合A={x|x