还剩20页未读,
继续阅读
2020届二轮复习不等式选讲教案(全国通用)
展开
2020届二轮复习 不等式选讲 教案(全国通用)
一、含有绝对值不等式的解法
1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法
(1)若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然后根据a,b的值解出即可.
(2)若c0),|x-a|+|x-b|≤c(c>0)型不等式的解法
可通过零点分区间法或利用绝对值的几何意义进行求解.
(1)零点分区间法的一般步骤
①令每个绝对值符号的代数式为零,并求出相应的根;
②将这些根按从小到大排列,把实数集分为若干个区间;
③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;
④取各个不等式解集的并集就是原不等式的解集.
(2)利用绝对值的几何意义
由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|0)或|x-a|-|x-b|>c(c>0)的不等式,利用绝对值的几何意义求解更直观.
3.|f(x)|>g(x),|f(x)|0)型不等式的解法
(1)|f(x)|>g(x)⇔f(x)>g(x)或f(x)
相关资料
更多