所属成套资源:人教版(新课标)九年级数学上册优质PPT课件
- 21.1《一元二次方程》PPT课件 课件 12 次下载
- 21.2.2《公式法》PPT课件 课件 12 次下载
- 21.2.3《因式分解法》PPT课件 课件 12 次下载
- 21.2.4《一元二次方程的根与系数的关系》PPT课件 课件 12 次下载
- 21.3《实际问题与一元二次方程》PPT课件 课件 15 次下载
数学九年级上册21.2.1 配方法获奖ppt课件
展开
这是一份数学九年级上册21.2.1 配方法获奖ppt课件,共24页。PPT课件主要包含了直接开平方法,配方法,例1解方程等内容,欢迎下载使用。
预备知识 什么是平方根?一个数的平方根怎么样表示?
一个数的平方等于a,这个数就叫做a的平方根.a(a≥0)的平方根记作:±x2=a(a≥0),则根据平方根的定义知,x=±
如果方程转化为x2=p,该如何解呢?
求出下列各式中x的值,并说说你的理由.1. x2=9 2. x2=5 x=± =±3 x=±
1.会把一元二次方程降次转化为两个一元一次方程.
2.运用开平方法解形如x2=p或(x+n)2=p (p≥0)的方程.
一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:
10×6x2=1500,
即x1=5,x2=-5.
因棱长不能是负值,所以正方体的棱长为5dm.
【试一试】解下列方程,并说明你所用的方法,与同伴交流.
解:根据平方根的意义,得x1=2, x2=-2.
解:根据平方根的意义,得x1=x2=0.
解:根据平方根的意义,得x2=-1, 因为负数没有平方根,所以原方程无解.
(2)当p=0 时,方程(I)有两个相等的实数根 x1 = x2 =0;
(3)当p0 时,根据平方根的意义,方程(I)有两个不等的实数根 , ;
利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.
例1 利用直接开平方法解下列方程:
∴x1=30, x2=-30.
利用直接开平方解形如x2=p方程
1.解下列方程(分析:把方程化为 x2=p 的形式)
解:把x+3看做一个整体,两边开平方得 ②
对照前面方法,你认为怎样解方程(x+3)2=5①?
于是,方程(x+3)2=5的两个根为
由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.
例2 解下列方程:(1)(x+1)2= 2 ;
解析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.
解:(1)∵x+1是2的平方根,
利用直接开平方法解形如(mx+n)2=p方程
解析:本题先将-4移到方程的右边,再同第1小题一样地解.
(2)(x-1)2-4 = 0;
即x1=3,x2=-1.
解:(2)移项,得(x-1)2=4.
∵x-1是4的平方根,
(3) 12(3-2x)2-3 = 0.
解析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.
解:(3)移项,得12(3-2x)2=3,
两边都除以12,得(3-2x)²=0.25.
∵3-2x是0.25的平方根,
∴3-2x=±0.5.
即3-2x=0.5,3-2x=-0.5
解需要利用完全平方公式转化的一元二次方程
解方程 x2+6x+9=2.
x1= x2=
解:方程的左边是完全平方形式,这个方程可以化为:(x+3)2=2进行降次得:
一元二次方程x2﹣9=0的解是 .
解析: ∵x2﹣9=0,∴x2=9, 解得:x1=3,x2=﹣3. 故答案为:x1=3,x2=﹣3.
D. (2x+3)2=25,解方程,得2x+3=±5, x1= 1;x2=-4
1.下列解方程的过程中,正确的是( )
B. (x-2)2=4,解方程,得x-2=2,x=4
(1)方程x2=0.25的根是 . (2)方程2x2=18的根是 . (3)方程(2x-1)2=9的根是 .
x1=0.5,x2=-0.5
3. 下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.
利用平方根的定义求方程的根的方法
关键要把方程化成 x2=p(p ≥0)或(x+n)2=p (p ≥0).
化为一般式,得 x2+6x-16=0
要使一块矩形场地的长比宽多6米,并且面积为16平方米,求场地的长和宽应各是多少?
解:设场地宽为xm,则长为( x+ 6)m,根据长方形面积为16m2,列方程得
2.探索直接开平方法和配方法之间的区别和联系.
1.了解配方的概念,掌握用配方法解一元二次方程及解决有关问题.
(1) 9x2=1 ;
(2) (x-2)2=2.
2.下列方程能用直接开平方法来解吗?
1.用直接开平方法解下列方程:
(1) x2+6x+9 =5;
(2)x2+6x+4=0.
把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方来解.
你还记得吗?填一填下列完全平方公式.
(1) a2+2ab+b2=( )2;
(2) a2-2ab+b2=( )2.
填一填(根据 )
【思考】 怎样解方程: x2+6x+4=0(1)
(1)方程(1)怎样变成(x+n)2=p的形式呢?
x2+6x=-4
x2+6x+9=-4+9
二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.
(2)为什么在方程x2+6x=-4的两边加上9?加其他数行吗?
提示:不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.
像上面那样,通过配成完全平方形式来解一元二次方程的方法叫做配方法. 配方是为了降次 ,把一个一元二次方程转化成两个一元一次方程来解.
x2-8x+42=-1+42 ,
解二次项系数是1的一元二次方程
1. 解方程x2+8x-4=0
解:移项,得 x2+8x=4 配方,得 x2+8x+4²=4+4², 整理,得 (x+4)2=20, 由此可得 x+4= , x1= , x2= .
解二次项系数不是1的一元二次方程
因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根.
为什么方程两边都加12?
思考1:用配方法解一元二次方程时,移项时要注意些什么?
思考2:用配方法解一元二次方程的一般步骤.
移项时需注意改变符号.
①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.
①当p>0时,则 ,方程的两个根为②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n.③当p
相关课件
这是一份九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.1 配方法精品课件ppt,共19页。PPT课件主要包含了教学目标,x-12,问题探究,解方程,同学们试一试,常数项,化为1,跟踪训练,拓展提升等内容,欢迎下载使用。
这是一份人教版九年级上册21.2.1 配方法备课课件ppt,共23页。PPT课件主要包含了导入新知,素养目标,直接开平方法,由此可得,x225,开平方得,x±5,探究新知,1x24,2x20等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.1 配方法精品课件ppt,文件包含2121配方法第2课时pptx、2121第2课时配方法pptx、第二十一章一元二次方程2121配方法第2课时教学详案docx等3份课件配套教学资源,其中PPT共40页, 欢迎下载使用。