山东省各地市2020年中考数学最后一题真题汇编卷 解析版
展开
山东省各地市2020年中考数学最后一题真题汇编卷
1.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
(1)求证:AF=EF;
(2)求MN+NG的最小值;
(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?
2.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
(1)观察猜想.
图1中,线段NM、NP的数量关系是 ,∠MNP的大小为 .
(2)探究证明
把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.
3.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
4.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
5.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
6.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.
7.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
8.(2020•威海)发现规律
(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
应用结论
(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
9.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
解答下列问题:
(1)当t为何值时,点M在线段CQ的垂直平分线上?
(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.
10.(2020•济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
(1)求证:△AEH≌△AGH;
(2)当AB=12,BE=4时.
①求△DGH周长的最小值;
②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
11.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 ,其理由为: .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(0,﹣1)
(2,﹣2)
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
12.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
(1)求抛物线的函数表达式;
(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
13.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
参考答案及试题分析
1.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
(1)求证:AF=EF;
(2)求MN+NG的最小值;
(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?
【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;
(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;
(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.
【解答】解:(1)连接CF,
∵FG垂直平分CE,
∴CF=EF,
∵四边形ABCD为菱形,
∴A和C关于对角线BD对称,
∴CF=AF,
∴AF=EF;
(2)连接AC,
∵M和N分别是AE和EF的中点,点G为CE中点,
∴MN=AF,NG=CF,即MN+NG=(AF+CF),
当点F与菱形ABCD对角线交点O重合时,
AF+CF最小,即此时MN+NG最小,
∵菱形ABCD边长为1,∠ABC=60°,
∴△ABC为等边三角形,AC=AB=1,
即MN+NG的最小值为;
(3)不变,理由是:
延长EF,交DC于H,
∵∠CFH=∠FCE+∠FEC,∠AFH=∠FEA+∠FEA,
∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:
∠AFD=∠CFD=∠AFC,
∵AF=CF=EF,
∴∠AEF=∠EAF,∠FEC=∠FCE,
∴∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,
∴∠ABF=∠CEF,
∵∠ABC=60°,
∴∠ABF=∠CEF=30°,为定值.
2.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
(1)观察猜想.
图1中,线段NM、NP的数量关系是 NM=NP ,∠MNP的大小为 60° .
(2)探究证明
把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.
【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;
(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;
(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.
【解答】解:(1)∵AB=AC,AD=AE,
∴BD=CE,
∵点M、N、P分别为DE、BE、BC的中点,
∴MN=BD,PN=CE,MN∥AB,PN∥AC,
∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
∴∠MNE+∠ENP=∠ABE+∠AEB,
∵∠ABE+∠AEB=180°﹣∠BAE=60°,
∴∠MNP=60°,
故答案为:NM=NP;60°;
(2)△MNP是等边三角形.
理由 如下:由旋转可得,∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵点M、N、P分别为DE、BE、BC的中点.
∴MN=BD,PN=CE,MN∥BD,PN∥CE,
∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
∴△MNP是等边三角形;
(3)根据题意得,BD≤AB+AD,即BD≤4,
∴MN≤2,
∴△MNP的面积==,
∴△MNP的面积的最大值为.
3.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
【分析】(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;
(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;
(3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.
【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),
则x==(2t﹣t),解得:t=1,
故点A、B的坐标分别为(2,0)、(﹣1,0),
则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,
解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+x+2;
(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),
由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,
设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),
则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,
∵﹣1<0,故DF有最大值,DF最大时m=1,
∴点D(1,2);
(3)存在,理由:
点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,
以点O,D,E为顶点的三角形与△BOC相似,
则,即=2或,即=2或,
解得:m=1或﹣2(舍去)或或(舍去),
故m=1或.
4.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;
(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=﹣x2+x+4;
(2)由抛物线的表达式知,点C(0,4),
由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),
∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,
∵OB=OC,故∠ABC=∠OCB=45°,
∴∠PQN=∠BQM=45°,
∴PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,
∵﹣<0,故当m=2时,PN有最大值为;
(3)存在,理由:
点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
①当AC=CQ时,过点Q作QE⊥y轴于点E,
则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
解得:m=±(舍去负值),
故点Q(,);
②当AC=AQ时,则AQ=AC=5,
在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
故点Q(1,3);
③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去);
综上,点Q的坐标为(1,3)或(,).
5.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b的值即可得出答案;
(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;
(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.
【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),
∴,解得,
∴抛物线解析式为:;
(2)当x=0时,y=8,
∴C(0,8),
∴直线BC解析式为:y=﹣x+8,
∵,
∴,
过点P作PG⊥x轴,交x轴于点G,交BC于点F,
设,
∴F(t,﹣t+8),
∴,
∴,
即,
∴t1=2,t2=6,
∴P1(2,12),P2(6,8);
(3)∵C(0,8),B(8,0),∠COB=90°,
∴△OBC为等腰直角三角形,
抛物线的对称轴为,
∴点E的横坐标为3,
又∵点E在直线BC上,
∴点E的纵坐标为5,
∴E(3,5),
设,
①当MN=EM,∠EMN=90°,
△NME~△COB,则,
解得或(舍去),
∴此时点M的坐标为(3,8),
②当ME=EN,当∠MEN=90°时,
则,解得:或(舍去),
∴此时点M的坐标为;
③当MN=EN,∠MNE=90°时,
连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,
此时四边形CMNE为正方形,
∴CM=CE,
∵C(0,8),E(3,5),M(3,m),
∴,
∴,
解得:m1=11,m2=5(舍去),
此时点M的坐标为(3,11);
故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).
6.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.
【分析】(1)函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式,即可求解;
(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),即可求解;
(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则=,解得:m=PN,即可求解.
【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
将点A、B、C的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设直线BE交y轴于点M,
从抛物线表达式知,抛物线的对称轴为x=1,
∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,
∵BC恰好平分∠DBE,故∠MBC=∠DBC,
而BC=BC,
故△BCD≌△BCM(AAS),
∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
设直线BE的表达式为:y=kx+b,则,解得,
故直线BE的表达式为:y=x﹣1;
(3)过点P作PN∥x轴交BC于点N,
则△PFN∽△AFB,则,
而S△BFP=mS△BAF,则=,解得:m=PN,
①当m=时,则PN=2,
设点P(t,t2﹣2t﹣3),
由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
故t﹣5=t2﹣2t﹣3,
解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
∵<0,故m的最大值为.
7.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【分析】(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②即可求解;
(2)△ADR的面积是▱OABC的面积的,则×AD×|yR|=×OA×OB,则×6×|yR|=×2×,即可求解;
(3)∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,即可求解.
【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,
故抛物线的表达式为:y=﹣x2+x+③;
(2)由抛物线的表达式得,点M(1,3)、点D(4,0);
∵△ADR的面积是▱OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得或,
故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);
(3)①当点P与M重合时,存在唯一的点Q(4,0)与D重合,此时符合题意,P(1,3).
②根据对称性可知.P(1,﹣3),Q与D重合时,也符合题意.
③当点P是EM的中点,点Q是DM的中点时,也符合题意,此时P(1,)
综上所述,满足条件的点P的坐标为(1,3)或(1,﹣3)或(1,).
8.(2020•威海)发现规律
(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
应用结论
(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;
(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;
(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.
【解答】解:(1)如图①,
∵△ABC,△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,
∵∠ABD+∠EBC=∠ABC=60°,
∴∠ACE+∠EBC=60°,
∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;
(2)如图②,
∵∠ABC=∠ADE=α,∠ACB=∠AED=β,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,,
∴∠BAD=∠CAE,,
∴△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,
∴∠BFC=∠BAC,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠BFC+α+β=180°,
∴∠BFC=180°﹣α﹣β;
(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,
∴MN=NK,∠MNK=60°,
∴△MNK是等边三角形,
∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,
如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,
∴△MOK≌△MQN,∠OMQ=60°,
∴OK=NQ,MO=MQ,
∴△MOQ是等边三角形,
∴∠QOM=60°,
∴∠NOQ=30°,
∵OK=NQ,
∴当NQ为最小值时,OK有最小值,
由垂线段最短可得:当QN⊥y轴时,NQ有最小值,
此时,QN⊥y轴,∠NOQ=30°,
∴NQ=OQ=,
∴线段OK长度的最小值为.
9.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
解答下列问题:
(1)当t为何值时,点M在线段CQ的垂直平分线上?
(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.
【分析】(1)由平行线分线段成比例可得,可求CM的长,由线段垂直平分线的性质可得CM=MQ,即可求解;
(2)利用锐角三角函数分别求出PH=t,QN=6﹣t,由矩形的性质可求解;
(3)利用面积的和差关系可得S=S梯形GMFH﹣S△CMQ﹣S△HFQ,即可求解;
(4)连接PF,延长AC交EF于K,由“SSS”可证△ABC≌△EBF,可得∠E=∠CAB,可证∠ABC=∠EKC=90°,由面积法可求CK的长,由角平分线的性质可求解.
【解答】解:(1)∵AB∥CD,
∴,
∴,
∴CM=,
∵点M在线段CQ的垂直平分线上,
∴CM=MQ,
∴1×t=,
∴t=;
(2)如图1,过点Q作QN⊥AF于点N,
∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,
∴AC===10cm,EF===10cm,
∵CE=2cm,CM=cm,
∴EM===,
∵sin∠PAH=sin∠CAB,
∴,
∴,
∴PH=t,
同理可求QN=6﹣t,
∵四边形PQNH是矩形,
∴PH=NQ,
∴6﹣t=t,
∴t=3;
∴当t=3时,四边形PQNH为矩形;
(3)如图2,过点Q作QN⊥AF于点N,
由(2)可知QN=6﹣t,
∵cos∠PAH=cos∠CAB,
∴,
∴,
∴AH=t,
∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,
∴S=×6×(8﹣t+6+8﹣t+)﹣××[6﹣(6﹣t)]﹣×(6﹣t)(8﹣t+6)=﹣t2+t+;
(4)存在,
理由如下:如图3,连接PF,延长AC交EF于K,
∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,
∴△ABC≌△EBF(SSS),
∴∠E=∠CAB,
又∵∠ACB=∠ECK,
∴∠ABC=∠EKC=90°,
∵S△CEM=×EC×CM=×EM×CK,
∴CK==,
∵PF平分∠AFE,PH⊥AF,PK⊥EF,
∴PH=PK,
∴t=10﹣2t+,
∴t=,
∴当t=时,使点P在∠AFE的平分线上.
10.(2020•济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
(1)求证:△AEH≌△AGH;
(2)当AB=12,BE=4时.
①求△DGH周长的最小值;
②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
【分析】(1)先判断出△ABC是等边三角形,进而判断出∠ACD=∠ABC,判断出△ABE≌△ACG,即可得出结论;
(2)①先判断出EH+DH最小时,△AEH的周长最小,在Rt△DCM中,求出CM=6,DM=6,在Rt△DME中,
根据勾股定理得,DE=4,即可得出结论;
②分两种情况:Ⅰ、当OH与线段AE相交时,判断出点N是AE的中点,即可得出结论;
Ⅱ、当OH与CE相交时,判断出点Q是CE的中点,再构造直角三角形,即可得出结论.
【解答】(1)证明:∵四边形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
∴△ABC是等边三角形,
∴∠ABC=60°,
∴∠BCD=120°,
∵AC是菱形ABCD的对角线,
∴∠ACD=∠BCD=60°=∠ABC,
∵BE=CG,
∴△ABE≌△ACG(SAS),
∴AE=AG,
∵AF平分∠EAG,
∴∠EAF=∠GAF,
∵AH=AH,
∴△AEH≌△AGH(SAS);
(2)①如图1,
过点D作DM⊥BC交BC的延长线于M,连接DE,
∵AB=12,BE=4,
∴CG=4,
∴CE=DG=12﹣4=8,
由(1)知,△AEH≌△AGH,
∴EH=HG,
∴l△DGH=DH+GH+DG=DH+HE+8,
要使△DGH的周长最小,则EH+DH最小,最小为DE,
在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,
∴CM=6,
∴DM=CM=6,
在Rt△DME中,EM=CE+CM=14,
根据勾股定理得,DE===4,
∴△DGH周长的最小值为4+8;
②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,
∴点O是AC的中点,
∴S△AON=S△CON=S△ACN,
∵三角形的面积与四边形的面积比为1:3,
∴=,
∴S△CEN=S△ACN,
∴AN=EN,
∵点O是AC的中点,
∴ON∥CE,
∴;
Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,
连接AQ,FG,∵点O是AC的中点,
∴S△AOQ=S△COQ=S△ACQ,
∵三角形的面积与四边形的面积比为1:3,
∴,
∴S△AEQ=S△ACQ,
∴CQ=EQ=CE=(12﹣4)=4,
∵点O是AC的中点,
∴OQ∥AE,设FQ=x,
∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,
由(1)知,AE=AG,
∵AF是∠EAG的角平分线,
∴∠EAF=∠GAF,
∵AF=AF,
∴△AEF≌△AGF(SAS),
∴FG=EF=4+x,
过点G作GP⊥BC交BC的延长线于P,
在Rt△CPG中,∠PCG=60°,CG=4,
∴CP=CG=2,PG=CP=2,
∴PF=CF+CP=4﹣x+2=6﹣x,
在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,
∴(6﹣x)2+(2)2=(4+x)2,
∴x=,
∴FQ=,EF=4+=,
∵OQ∥AE,
∴==,
即的值为或.
11.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 PA=PM ,其理由为: 线段垂直平分线上的点与这条线段两个端点的距离相等 .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(﹣2,﹣2)
(0,﹣1)
(2,﹣2)
(4,﹣5)
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
【分析】(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;
(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;
(3)依照题意,画出图象;
(4)由两点距离公式可得﹣y=,可求y关于x的函数解析式;
(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.
【解答】解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,
∴GH是AM的垂直平分线,
∵点P是GH上一点,
∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
∵PA=PM,
∴﹣a=,
∴a=﹣2,
∴点P(﹣2,﹣2),
当点M(4,0)时,设点P(4,b),(b<0)
∵PA=PM,
∴﹣b=,
∴b=﹣5,
∴点P(4,﹣5),
故答案为:(﹣2,﹣2),(4,﹣5);
(3)依照题意,画出图象,
猜想曲线L的形状为抛物线,
故答案为:抛物线;
(4)∵PA=PM,点P的坐标是(x,y),(y<0),
∴﹣y=,
∴y=﹣x2﹣1;
(5)∵点B(﹣1,),C(1,),
∴BC=2,OB==2,OC==2,
∴BC=OB=OC,
∴△BOC是等边三角形,
∴∠BOC=60°,
如图3,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,
∴∠BEC=30°,
设点E(m,n),
∵点E在抛物线上,
∴n=﹣m2﹣1,
∵OE=OB=2,
∴=2,
∴n1=2﹣2,n2=2+2(舍去),
如图3,可知当点D在点E下方时,∠BDC<30°,
∴点D的纵坐标yD的取值范围为yD<2﹣2.
12.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
(1)求抛物线的函数表达式;
(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
【分析】(1)根据OA=2,OB=4确定点A和B的坐标,代入抛物线的解析式列方程组解出即可;
(2)如图1,过D作DG⊥x轴于G,交BC于H,利用待定系数法求直线BC的解析式,设D(x,x2﹣x﹣6),则H(x,x﹣6),表示DH的长,根据△BCD的面积是,列方程可得x的值,因为D在对称轴的右侧,所以x=1不符合题意,舍去,利用三角形面积公式可得结论;
(3)分两种情况:N在x轴的上方和下方,根据y=确定N的坐标,并正确画图.
【解答】解:(1)∵OA=2,OB=4,
∴A(﹣2,0),B(4,0),
把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣6中得:,
∴抛物线的解析式为:y=x2﹣x﹣6;
(2)如图1,过D作DG⊥x轴于G,交BC于H,
当x=0时,y=﹣6,
∴C(0,﹣6),
设BC的解析式为:y=kx+b,
则,解得:,
∴BC的解析式为:y=x﹣6,
设D(x,x2﹣x﹣6),则H(x,x﹣6),
∴DH=x﹣6﹣(x2﹣x﹣6)=﹣,
∵△BCD的面积是,
∴,
∴,
解得:x=1或3,
∵点D在直线l右侧的抛物线上,
∴D(3,﹣),
∴△ABD的面积===;
(3)分两种情况:
①如图2,N在x轴的上方时,四边形MNBD是平行四边形,
∵B(4,0),D(3,﹣),且M在x轴上,
∴N的纵坐标为,
当y=时,即x2﹣x﹣6=,
解得:x=1+或1﹣,
∴N(1﹣,)或(1+,);
②如图3,点N在x轴的下方时,四边形BDNM是平行四边形,此时M与O重合,
∴N(﹣1,﹣);
综上,点N的坐标为:(1﹣,)或(1+,)或(﹣1,﹣).
13.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.
(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.
【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
∵抛物线经过B(0,﹣),
∴﹣=4a﹣1,
∴a=,
∴抛物线的解析式为y=(x﹣2)2﹣1.
(2)证明:∵P(m,n),
∴n=(m﹣2)2﹣1=m2﹣m﹣,
∴P(m,m2﹣m﹣),
∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,
∵F(2,1),
∴PF==,
∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,
∴d2=PF2,
∴PF=d.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,
∴DQ+QF的值最小时,△DFQ的周长最小,
∵QF=QH,
∴DQ+DF=DQ+QH,
根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
∴DQ+QH的最小值为6,
∴△DFQ的周长的最小值为2+6,此时Q(4,﹣).
14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可
(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;
(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.
【解答】解:(1)将点A(﹣1,0),B(4,0),代入y=ax2+bx+4,
得:,
解得:,
∴二次函数的表达式为:y=﹣x2+3x+4,
当x=0时,y=4,
∴C(0,4),
设BC所在直线的表达式为:y=mx+n,
将C(0,4)、B(4,0)代入y=mx+n,
得:,
解得:,
∴BC所在直线的表达式为:y=﹣x+4;
(2)∵DE⊥x轴,PF⊥x轴,
∴DE∥PF,
只要DE=PF,四边形DEFP即为平行四边形,
∵y=﹣x2+3x+4=﹣(x﹣)2+,
∴点D的坐标为:(,),
将x=代入y=﹣x+4,即y=﹣+4=,
∴点E的坐标为:(,),
∴DE=﹣=,
设点P的横坐标为t,
则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
由DE=PF得:﹣t2+4t=,
解得:t1=(不合题意舍去),t2=,
当t=时,﹣t2+3t+4=﹣()2+3×+4=,
∴点P的坐标为(,);
(3)存在,理由如下:
如图2所示:
由(2)得:PF∥DE,
∴∠CED=∠CFP,
又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
∴∠PCF≠∠DCE,
∴只有∠PCF=∠CDE时,△PCF∽△CDE,
∴=,
∵C(0,4)、E(,),
∴CE==,
由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
∴CF==t,
∴=,
∵t≠0,
∴(﹣t+4)=3,
解得:t=,
当t=时,﹣t2+3t+4=﹣()2+3×+4=,
∴点P的坐标为:(,).