人教版九年级上册第二十一章 一元二次方程综合与测试单元测试当堂检测题
展开这是一份人教版九年级上册第二十一章 一元二次方程综合与测试单元测试当堂检测题,共11页。试卷主要包含了下列方程中,是一元二次方程是,一元二次方程,已知实数x满足等内容,欢迎下载使用。
(满分120分)
班级:___________姓名:___________学号:___________成绩:___________
一.选择题(共10小题,满分30分,每小题3分)
1.下列方程中,是一元二次方程是( )
A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.=x+2
2.一元二次方程ax2+bx=c的二次项系数为a,则常数项是( )
A.0B.bC.cD.﹣c
3.一元二次方程x2+4x=2配方后化为( )
A.(x+2)2=6B.(x﹣2)2=6C.(x+2)2=﹣6D.(x+2)2=﹣2
4.一元二次方程x2﹣5x+6=0的解为( )
A.x1=2,x2=﹣3B.x1=﹣2,x2=3
C.x1=﹣2,x2=﹣3D.x1=2,x2=3
5.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是( )
A.9B.4.5C.3D.﹣3
6.一元二次方程(x﹣1)2=2x+3的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
7.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )
A.6B.7C.8D.9
8.已知实数x满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么x2﹣2x+1的值为( )
A.﹣1或3B.﹣3或1C.3D.1
9.国家实行“精准扶贫”政策以来,很多贫困人口走上了致富的道路,某地区2017年底有贫困人口50000人,通过社会各界的努力,2019年底贫困人口减少至10000人.设2017年底至2019年底该地区贫因人口的平均下降率为x,根据题意列方程得( )
A.50000(1﹣x)2=10000B.50000(1+x)2=10000
C.50000(1﹣2x)=10000D.50000(1+2x)=10000
10.若α、β是方程x2+2x﹣2020=0的两个实数根,则α2+3α+β的值为( )
A.2018B.2020C.﹣2020D.4040
二.填空题(共6小题,满分24分,每小题4分)
11.方程5x2﹣x﹣3=x2﹣3+x的二次项系数是 .
12.已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是 .
13.如果m是方程x2﹣2x﹣6=0的一个根,那么代数式2m﹣m2+7的值为 .
14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为 .
15.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了 个人.
16.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程 .
三.解答题(共7小题,满分66分)
17.(16分)解方程:
(1)x2﹣x﹣20=0; (2)x2﹣9x+5=0.
(3)x2﹣2x﹣3=0; (4)=1.
18.(7分)已知:关于x的一元二次方程x2+mx=3(m为常数).
(1)证明:无论m为何值,该方程都有两个不相等的实数根;
(2)若方程有一个根为2,求方程的另一个根.
19.(7分)某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?
20.(8分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长率;
(2)按照这个增长率,预计4月份平均日产量为多少?
21.(8分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间正好可以住满.每个房间每天的定价每增加10元,就会有一个房间空闲.已知有游客入住的房间,宾馆每天需对每个房间支出50元的各种费用.
(1)若某天宾馆的入住量为58个房间,则该天宾馆的利润为 元;
(2)求宾馆每天房间入住量达到多少个时,每天的利润为11000元.
22.(10分)小明在解一元二次方程时,发现有这样一种解法:
如:解方程x(x+4)=6.
解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.
(x+2)2﹣22=6,
(x+2)2=6+22,
(x+2)2=10.
直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.
我们称小明这种解法为“平均数法”.
(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.
解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.
(x+a)2﹣b2=5,
(x+a)2=5+b2.
直接开平方并整理,得.x1=c,x2=d.
上述过程中的a、b、c、d表示的数分别为 , , , .
(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.
23.(10分)先阅读下面的内容,再解决问题:
问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax﹣3a2
=(x2+2ax+a2)﹣a2﹣3a2
=(x+a)2﹣4a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:
(1)分解因式:a2﹣8a+15= ;
(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;
(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.
参考答案
一.选择题(共10小题,满分30分,每小题3分)
1.解:A、含有两个未知数,不是一元二次方程;
B、符合一元二次方程的定义,是一元二次方程;
C、含有不等号,不是一元二次方程;
D、含有分式,不是一元二次方程.
故选:B.
2.解:∵ax2+bx=c,
∴ax2+bx﹣c=0,
∴一元二次方程ax2+bx=c的常数项是﹣c,
故选:D.
3.解:∵x2+4x=2,
∴x2+4x+4=2+4,
∴(x+2)2=6.
故选:A.
4.解:(x﹣2)(x﹣3)=0,
x﹣2=0或x﹣3=0,
所以x1=2,x2=3.
故选:D.
5.解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,
解得a=4.5.
故选:B.
6.解:方程化为x2﹣4x﹣2=0,
∵△=(﹣4)2﹣4×(﹣2)=24>0,
∴方程有两个不相等的实数根.
故选:A.
7.解:设参加此次比赛的球队数为x队,根据题意得:
x(x﹣1)=36,
化简,得x2﹣x﹣72=0,
解得x1=9,x2=﹣8(舍去),
答:参加此次比赛的球队数是9队.
故选:D.
8.解:设x2﹣2x+1=a,
∵(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,
∴a2+2a﹣3=0,
解得:a=﹣3或1,
当a=﹣3时,x2﹣2x+1=﹣3,
即(x﹣1)2=﹣3,此方程无解;
当a=1时,x2﹣2x+1=1,
此时方程有解,
故选:D.
9.解:设2017年底至2019年底该地区贫因人口的平均下降率为x,根据题意得:
50000(1﹣x)2=10000,
故选:A.
10.解:∵α是方程x2+2x﹣2020=0的根,
∴α2+2α﹣2020=0,
即α2=﹣2α+2020,
∴α2+3α+β=﹣2α+2020+3α+β
=α+β+2020,
∵α、β是方程x2+2x﹣2020=0的两个实数根,
∴α+β=﹣2,
∴α2+3α+β=﹣2+2020=2018.
故选:A.
二.填空题(共6小题,满分24分,每小题4分)
11.解:方程整理得:4x2﹣2x=0,
则方程的二次项系数为4.
故答案为:4.
12.解:∵关于x的方程x2+2x+k=0有两个相等的实数根,
∴△=22﹣4×1×k=0,
解得:k=1.
故答案为:1.
13.解:由题意可知:m2﹣2m﹣6=0,
∴原式=﹣(m2﹣2m)+7
=﹣6+7
=1.
14.解:根据题意得x1+x2=﹣,x1x2=﹣2,
所以+===.
故答案为.
15.解:设每轮传染中平均一个人传染了x个人,根据题意,得
(1+x)2=169
1+x=±13
x1=12,x2=﹣14(舍去).
答:每轮传染中平均一个人传染了12个人.
故答案为:12.
16.解:根据题意得2×3=c,
1+5=﹣b,
解得b=﹣6,c=6,
所以正确的一元二次方程为x2﹣6x+6=0.
故答案为x2﹣6x+6=0.
三.解答题(共8小题,满分66分)
17.解:(1)x2﹣x﹣20=0,
分解因式得:(x﹣5)(x+4)=0,
可得x﹣5=0或x+4=0,
解得:x1=5,x2=﹣4;
(2)x2﹣9x+5=0,
这里a=1,b=﹣9,c=5,
∵△=81﹣20=61,
∴x=,
解得:x1=,x2=.
(3)(x﹣3)(x+1)=0,
x﹣3=0或x+1=0,
所以x1=3,x2=﹣1;
(4)去分母得(x﹣1)2﹣4=(x+1)(x﹣1),
解得x=﹣1,
经检验,原方程无解.
18.(1)证明:x2+mx﹣3=0,
∵a=1,b=m,c=﹣3
∴△=b2﹣4ac=m2﹣4×1×(﹣3)=m2+12,
∵m2≥0,
∴m2+12>0,
∴△>0,
∴无论m为何值,该方程都有两个不相等的实数根;
(2)设方程的另一个根为x1,
则 2•x1===﹣3,
∴x1=﹣
∴方程的另一个根为﹣.
19.解:设垂直于墙的边长为x米,则平行于墙的边长为(28﹣2x)米,
依题意,得:x(28﹣2x)=80,
整理,得:x1=4,x2=10.
当x=4时,28﹣2x=20>12,不符合题意,舍去;
当x=10时,28﹣2x=8,符合题意.
答:这个花圃的长为10米,宽为8米.
20.解:(1)设口罩日产量的月平均增长率为x,根据题意,得
20000(1+x)2=24200
解得x1=﹣2.1(舍去),x2=0.1=10%,
答:口罩日产量的月平均增长率为10%.
(2)24200(1+0.1)=26620(个).
答:预计4月份平均日产量为26620个.
21.解:(1)[200+10×(60﹣58)﹣50]×58=9860(元).
故答案为:9860.
(2)设每个房间每天的定价增加了x元,则每天可入住(60﹣)个房间,
依题意,得:(60﹣)(200+x﹣50)=11000,
化简得:x2﹣450x+20000=0,
解得:x1=50,x2=400,
∴60﹣=55或20.
答:每天房间入住量达到55个或20个时,利润为11000元.
22.解:(1)原方程可变形,得:[(x+5)﹣2][(x+5)+2]=5.
(x+5)2﹣22=5,
(x+5)2=5+22.
直接开平方并整理,得.x1=﹣2,x2=﹣8.
上述过程中的a、b、c、d表示的数分别为5、2、﹣2、﹣8,
故答案为:5、2、﹣2、﹣8;
(2)原方程可变形,得:[(x﹣1)﹣4][(x﹣1)+4]=6.
(x﹣1)2﹣42=6,
(x﹣1)2=6+42.
x﹣1=±,
∴x=1±,
直接开平方并整理,得.x1=1+,x2=1﹣.
23.解:(1)a2﹣8a+15=(a2﹣8a+16)﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5);
故答案为:(a﹣3)(a﹣5);
(2)∵a2+b2﹣14a﹣8b+65=0,
∴(a2﹣14a+49)+(b2﹣8b+16)=0,
∴(a﹣7)2+(b﹣4)2=0,
∴a﹣7=0,b﹣4=0,
解得,a=7,b=4,
∵△ABC的三边长是a,b,c,
∴3<c<11,
又∵c边的长为奇数,
∴c=5,7,9,
当a=7,b=4,c=5时,△ABC的周长最小,最小值是:7+4+5=16;
(3)﹣2x2﹣4x+3,
=﹣2(x2+2x+1﹣1)+3,
=﹣2(x+1)2+5,
∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5.
相关试卷
这是一份人教版九年级上册21.1 一元二次方程精品一课一练,文件包含人教版数学九年级上册第21章《一元二次方程》单元复习检测解析版docx、人教版数学九年级上册第21章《一元二次方程》单元复习检测原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份人教版九年级上册第21章一元二次方程单元测试题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册第二十一章 一元二次方程综合与测试精品单元测试同步练习题,共8页。