高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性优质课第2课时2课时教学设计
展开【例1】 (1)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求f(x)的解析式;
(2)设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=eq \f(1,x-1),求函数f(x),g(x)的解析式.
[思路点拨] (1)eq \x(设x<0,则-x>0)eq \(―――――→,\s\up14(当x>0),\s\d14(fx=-x+1))
eq \x(求f-x)eq \(―――→,\s\up14(奇函数))eq \x(得x<0时fx的解析式)eq \(―――→,\s\up14(奇函数),\s\d14(的性质))eq \x(f0=0)eq \(――――→,\s\up14(分段函数))eq \x(fx的解析式)
(2)eq \x(fx+gx=\f(1,x-1))eq \(――――――→,\s\up14(用-x代式中x))
eq \x(得f-x+g-x=\f(1,-x-1))eq \(―――→,\s\up14(奇偶性))
eq \x(得fx-gx=-\f(1,x+1))eq \(――――→,\s\up14(解方程组))
eq \x(得fx,gx的解析式)
[解] (1)设x<0,则-x>0,
∴f(-x)=-(-x)+1=x+1,
又∵函数f(x)是定义域为R的奇函数,
∴f(-x)=-f(x)=x+1,
∴当x<0时,f(x)=-x-1.
又x=0时,f(0)=0,
所以f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x-1,x<0,,0,x=0,,-x+1,x>0.))
(2)∵f(x)是偶函数,g(x)是奇函数,
∴f(-x)=f(x),g(-x)=-g(x).
由f(x)+g(x)=eq \f(1,x-1),①
用-x代替x得f(-x)+g(-x)=eq \f(1,-x-1),
∴f(x)-g(x)=eq \f(1,-x-1),②
(①+②)÷2,得f(x)=eq \f(1,x2-1);
(①-②)÷2,得g(x)=eq \f(x,x2-1).
把本例(2)的条件“f(x)是偶函数,g(x)是奇函数”改为“f(x)是奇函数,g(x)是偶函数”,再求f(x),g(x)的解析式.
[解] ∵f(x)是奇函数,g(x)是偶函数,
∴f(-x)=-f(x),g(-x)=g(x),
又f(x)+g(x)=eq \f(1,x-1),①
用-x代替上式中的x,得
f(-x)+g(-x)=eq \f(1,-x-1),
即f(x)-g(x)=eq \f(1,x+1).②
联立①②得
f(x)=eq \f(x,x2-1),g(x)=eq \f(1,x2-1).
利用函数奇偶性求解析式的方法
1“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.
2要利用已知区间的解析式进行代入.
3利用fx的奇偶性写出-fx或f-x,从而解出fx.
提醒:若函数fx的定义域内含0且为奇函数,则必有f0=0,但若为偶函数,未必有f0=0.
[探究问题]
1.如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上的单调性如何?
如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?
提示:如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.
2.你能否把上述问题所得出的结论用一句话概括出来?
提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.
3.若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?
提示:f(-2)>f(3),若f(a)>f(b),则|a|<|b|.
角度一 比较大小问题
【例2】 函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )
A.f(1)
B.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))
C.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))
D.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))
[思路点拨] eq \x(y=fx+2是偶函数)―→
eq \x(fx的图像关于x=2对称)eq \(――――→,\s\up14([0,2]上),\s\d14(递增))eq \x(比较大小)
B [∵函数f(x+2)是偶函数,
∴函数f(x)的图像关于直线x=2对称,∴feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))),又f(x)在[0,2]上单调递增,
∴feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))
比较大小的求解策略
看自变量是否在同一单调区间上.
(1)在同一单调区间上,直接利用函数的单调性比较大小;
(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.
1.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )
A.f(π)>f(-3)>f(-2)
B.f(π)>f(-2)>f(-3)
C.f(π)<f(-3)<f(-2)
D.f(π)<f(-2)<f(-3)
A [由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图像的几何特征是自变量的绝对值越小,则其函数值越
小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.]
角度二 解不等式问题
【例3】 已知定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)
[解] 因为f(x)在区间[-2,2]上为奇函数,且在区间[0,2]上是减函数,所以f(x)在[-2,2]上为减函数.
又f(1-m)
即eq \b\lc\{\rc\ (\a\vs4\al\c1(-1≤m≤3,,-2≤m≤2,,m<\f(1,2).))解得-1≤m
故实数m的取值范围是eq \b\lc\[\rc\)(\a\vs4\al\c1(-1,\f(1,2))).
解有关奇函数fx的不等式fa+fb<0,先将fa+fb<0变形为fa<-fb=f-b,再利用fx的单调性去掉“f”,化为关于a,b的不等式.另外,要特别注意函数的定义域.
由于偶函数在关于原点对称的两个区间上的单调性相反,所以我们要利用偶函数的性质fx=f|x|=f-|x|将fgx中的gx全部化到同一个单调区间内,再利用单调性去掉符号f,使不等式得解.
2.函数f(x)是定义在实数集上的偶函数,且在[0,+∞)上是增函数,f(3)
A.a>1 B.a<-2
C.a>1或a<-2 D.-1
C [因为函数f(x)在实数集上是偶函数,且f(3)
1.具有奇偶性的函数的单调性的特点
(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.
(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.
2.利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f(-x)=-f(x)或f(-x)=f(x),但要注意求给定哪个区间的解析式就设这个区间上的变量为x,然后把x转化为-x(另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.
3.偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.
1.思考辨析
(1)奇函数f(x)=eq \f(1,x),当x>0时的解析式与x<0时的解析式相同,所以一般的奇函数在(0,+∞)上的解析式与(-∞,0)上的解析式也相同.( )
(2)对于偶函数f(x),恒有f(x)=f(|x|).( )
(3)若存在x0使f(1-x0)=f(1+x0),则f(x)关于直线x=1对称.( )
(4)若奇函数f(x)在(0,+∞)上有最小值a,则f(x)在(-∞,0)上有最大值-a.( )
[答案] (1)× (2)√ (3)× (4)√
2.已知偶函数在(-∞,0)上单调递增,则( )
A.f(1)>f(2) B.f(1)
C.f(1)=f(2) D.以上都有可能
A [∵f(x)是偶函数,且在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减,∴f(1)>f(2),故选A.]
3.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)
A.ab
C.|a|<|b| D.0≤ab≥0
C [∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,
∴由f(a)
4.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.
[解] f(-x)+g(-x)=x2-x-2,由f(x)是偶函数,g(x)是奇函数得,f(x)-g(x)=x2-x-2,又f(x)+g(x)=x2+x-2,两式联立得f(x)=x2-2,g(x)=x.
学 习 目 标
核 心 素 养
1.会根据函数奇偶性求函数值或解析式.
2.能利用函数的奇偶性与单调性分析、解决较简单的问题.
1.利用奇偶性求函数的解析式,培养逻辑推理素养.
2.借助奇偶性与单调性的应用,提升逻辑推理、数学运算素养.
用奇偶性求解析式
函数单调性和奇偶性的综合问题
苏教版 (2019)必修 第一册5.4 函数的奇偶性第2课时学案: 这是一份苏教版 (2019)必修 第一册5.4 函数的奇偶性第2课时学案,共13页。学案主要包含了利用奇偶性与单调性比较大小,根据奇偶性求函数的解析式,利用单调性与奇偶性解不等式等内容,欢迎下载使用。
人教B版 (2019)必修 第一册3.1.3 函数的奇偶性第2课时学案设计: 这是一份人教B版 (2019)必修 第一册3.1.3 函数的奇偶性第2课时学案设计,共11页。
人教B版 (2019)必修 第一册第三章 函数3.1 函数的概念与性质3.1.3 函数的奇偶性第2课时导学案: 这是一份人教B版 (2019)必修 第一册第三章 函数3.1 函数的概念与性质3.1.3 函数的奇偶性第2课时导学案,共12页。