终身会员
搜索
    上传资料 赚现金

    (浙江专用)2021届高考数学一轮复习专题八立体几何8.4直线、平面垂直的判定与性质试题(含解析)

    立即下载
    加入资料篮
    (浙江专用)2021届高考数学一轮复习专题八立体几何8.4直线、平面垂直的判定与性质试题(含解析)第1页
    (浙江专用)2021届高考数学一轮复习专题八立体几何8.4直线、平面垂直的判定与性质试题(含解析)第2页
    (浙江专用)2021届高考数学一轮复习专题八立体几何8.4直线、平面垂直的判定与性质试题(含解析)第3页
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (浙江专用)2021届高考数学一轮复习专题八立体几何8.4直线、平面垂直的判定与性质试题(含解析)

    展开

    §8.4 直线、平面垂直的判定与性质

    基础篇固本夯基

    【基础集训】

    考点一 直线与平面垂直的判定与性质

    1.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是(  )

    A.α⊥β且mα     B.α⊥β且m∥α

    C.m∥n且n⊥β     D.m⊥n且n∥β

    答案 C

    2.下列命题中错误的是(  )

    A.如果平面α外的直线a不平行于平面α,则平面α内不存在与a平行的直线

    B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γ

    C.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β

    D.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交

    答案 C

    3.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E、F分别是A在PB、PC上的射影,给出下列结论:

    ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.

    其中正确命题的序号是    . 

    答案 ①②③

    4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

    如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.

    解析 因为PD⊥底面ABCD,所以PD⊥BC,

    由底面ABCD为长方形,得BC⊥CD,因为PD∩CD=D,

    所以BC⊥平面PCD,因为DE平面PCD,所以BC⊥DE.

    又因为PD=CD,点E是PC的中点,所以DE⊥PC.

    因为PC∩BC=C,所以DE⊥平面PBC.

    因为PB平面PBC,所以PB⊥DE.

    又PB⊥EF,DE∩EF=E,

    所以PB⊥平面DEF.

    由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体DBEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.

    考点二 平面与平面垂直的判定与性质

    5.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,给出下列结论:

    ①AD∥平面PBC;

    ②平面PAC⊥平面PBD;

    ③平面PAB⊥平面PAC;

    ④平面PAD⊥平面PDC.

    其中正确结论的序号是      . 

    答案 ①②④

    6.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

    (1)求证:PA⊥BD;

    (2)求证:平面BDE⊥平面PAC;

    (3)当PA∥平面BDE时,求三棱锥E-BCD的体积.

    解析 (1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,

    所以PA⊥平面ABC.因为BD平面ABC,所以PA⊥BD.

    (2)证明:因为AB=BC,D为AC的中点,

    所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD平面BDE,所以平面BDE⊥平面PAC.

    (3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=PA=1,BD=DC=.

    由(1)知,PA⊥平面ABC,所以DE⊥平面ABC.所以三棱锥E-BCD的体积V=×BD·DC·DE=.

    7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.

    (1)求证:PE⊥BC;

    (2)求证:平面PAB⊥平面PCD;

    (3)求证:EF∥平面PCD.

    证明 (1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.

    (2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD.所以AB⊥PD.又因为PA⊥PD,PA∩AB=A,所以PD⊥平面PAB.因为PD平面PCD,所以平面PAB⊥平面PCD.

    (3)取PC的中点G,连接FG,DG.

    因为F,G分别为PB,PC的中点,所以FG∥BC,FG=BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF∥DG.又因为EF平面PCD,DG平面PCD,所以EF∥平面PCD.

    综合篇知能转换

    【综合集训】

    考法一 证明直线与平面垂直的方法

    1.(2017课标全国Ⅲ,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则(  )

    A.A1E⊥DC1     B.A1E⊥BD   

    C.A1E⊥BC1     D.A1E⊥AC

    答案 C

    2.(2018课标全国Ⅱ,19,12分)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.

    (1)证明:PO⊥平面ABC;

    (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.

    解析 (1)证明:因为AP=CP=AC=4,O为AC的中点,

    所以OP⊥AC,且OP=2.

    连接OB,因为AB=BC=AC,

    所以△ABC为等腰直角三角形,

    且OB⊥AC,OB=AC=2.

    由OP2+OB2=PB2知,OP⊥OB.

    由OP⊥OB,OP⊥AC且OB∩AC=O知PO⊥平面ABC.

    (2)作CH⊥OM,垂足为H.

    又由(1)可得OP⊥CH,

    所以CH⊥平面POM.

    故CH的长为点C到平面POM的距离.

    由题设可知OC=AC=2,CM=BC=,∠ACB=45°.

    所以OM=,CH==.

    所以点C到平面POM的距离为.

    3.(2019 5·3原创题)如图,在以P为顶点,母线长为的圆锥中,底面圆O的直径AB长为2,点C在圆O所在平面内,且AC是圆O的切线,BC交圆O于点D,连接PD,OD.

    (1)求证:PB⊥平面PAC;

    (2)若AC=,求点O到平面PBD的距离.

    解析 (1)证明:因为AB是圆O的直径,AC与圆O切于点A,所以AC⊥AB.

    又在圆锥中,PO垂直于底面圆O,

    所以PO⊥AC,而PO∩AB=O,

    所以AC⊥平面PAB,从而AC⊥PB.

    在三角形PAB中,PA=PB=,AB=2,

    故有PA2+PB2=AB2,所以PA⊥PB,又PA∩AC=A,

    所以PB⊥平面PAC.

    (2)解法一:作OE⊥BD于E,连接PE.又PO⊥BD,PO∩OE=O,所以BD⊥平面POE.又BD平面PBD,所以平面PBD⊥平面POE,作OF⊥PE于F,因为平面PBD∩平面POE=PE,所以OF⊥平面PBD,故OF的长为点O到平面PBD的距离.

    连接AD.在Rt△POE中,PO=1,OE=AD==,所以OF==.即点O到平面PBD的距离为.

    解法二:因为AB=2,AC=,AC⊥AB,所以在直角△ABC中,∠ABC=.又OD=OB=1,则△OBD是等腰三角形,所以BD=,S△OBD=×1×1×sin=.又PB=PD=,所以S△PBD=××=,设点O到平面PBD的距离为d,由VP-OBD=VO-PBD,即S△OBD·PO=S△PBD·d,可得d=.解法三:因为AB=2,AC=,AC⊥AB,

    所以S△ABC=×2×=.又由(1)可知,AC⊥平面PAB,则AC⊥PA,所以PC==.又PB⊥平面PAC,所以PB⊥PC,则S△PBC=××=.设点O到平面PBD的距离为d,则A到平面PBC的距离为2d,由VP-ACB=VA-PBC,

    S△ABC·PO=S△PBC·2d,可得d=.

    考法二 平面与平面垂直的判定与性质问题

    4.(2018广东六校4月联考,18)如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,AB=BC=1,∠BAD=120°,PB=PC=,PA=2,E,F分别是AD,PD的中点.

    (1)证明:平面EFC⊥平面PBC;

    (2)求二面角A-BC-P的余弦值.

    解析 (1)证明:取BC的中点G,连接PG,AG,AC,

    ∵PB=PC,∴PG⊥BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠ABC=60°.又AB=BC=1,∴△ABC是等边三角形,∴AG⊥BC.∵AG∩PG=G,∴BC⊥平面PAG,

    ∴BC⊥PA.(3分)

    ∵E,F分别是AD,PD的中点,∴EF∥PA,易知四边形EAGC为平行四边形,∴EC∥AG,∴BC⊥EF,BC⊥EC,

    ∵EF∩EC=E,∴BC⊥平面EFC,(5分)∵BC平面PBC,∴平面EFC⊥平面PBC.(6分)

    (2)由(1)知PG⊥BC,AG⊥BC,∴∠PGA是二面角A-BC-P的平面角.(7分)∵PG==,AG=,PA=2,

    ∴在△PAG中,cos∠PGA==-,(11分)

    ∴二面角A-BC-P的余弦值为-.(12分)

    5.(2019北京,18,14分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.

    (1)求证:BD⊥平面PAC;

    (2)若∠ABC=60°,求证:平面PAB⊥平面PAE;

    (3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

    解析 (1)因为PA⊥平面ABCD,所以PA⊥BD.又因为底面ABCD为菱形,所以BD⊥AC.所以BD⊥平面PAC.

    (2)因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE.

    (3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连接CF,FG,EG.则FG∥AB,且FG=AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF平面PAE,EG平面PAE,所以CF∥平面PAE.

     

     

    【五年高考】

    考点一 直线与平面垂直的判定与性质

    1.(2019北京,13,5分)已知l,m是平面α外的两条不同直线.给出下列三个论断:

    ①l⊥m;②m∥α;③l⊥α.

    以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:          . 

    答案 若l⊥m,l⊥α,则m∥α(答案不唯一)

     

    2.(2019课标全国Ⅱ,17,12分)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.

    (1)证明:BE⊥平面EB1C1;

    (2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.

    解析 本题考查了长方体的性质、直线与平面垂直的判定与性质和锥体的体积,考查了空间想象能力,主要体现了逻辑推理和直观想象的核心素养.

    (1)由已知得B1C1⊥平面ABB1A1,BE平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.

    (2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.

    作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.

    所以,四棱锥E-BB1C1C的体积V=×3×6×3=18.

    思路分析 (1)由长方体的性质易得B1C1⊥BE,再利用直线与平面垂直的判定定理求证;(2)求该四棱锥的体积的关键是求高,利用平面与平面垂直的性质定理,可知只需过E作B1B的垂线即可得高.

    解题关键 由长方体的性质找BE的垂线和平面BB1C1C的垂线是求解的关键.

    3.(2019天津,17,13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.

    (1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;

    (2)求证:PA⊥平面PCD;

    (3)求直线AD与平面PAC所成角的正弦值.

    解析 本题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.以线面角的计算为依托考查数学运算与直观想象的核心素养.

    (1)证明:连接BD,易知AC∩BD=H,BH=DH.

    又由BG=PG,故GH∥PD.又因为GH平面PAD,PD平面PAD,所以GH∥平面PAD.

    (2)证明:取棱PC的中点N,连接DN.

    依题意,得DN⊥PC.

    又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA平面PAC,故DN⊥PA.

    又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.

    (3)连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.

    因为△PCD为等边三角形,CD=2且N为PC的中点,

    所以DN=.

    又DN⊥AN,在Rt△AND中,sin∠DAN==.

    所以,直线AD与平面PAC所成角的正弦值为.

    思路分析 (1)在△BPD中证明GH∥PD,从而利用线面平行的判定定理证线面平行;(2)取棱PC的中点N,连接DN,有DN⊥PC,由面面垂直的性质,得DN⊥平面PAC,从而得DN⊥PA,进而得出结论;(3)由(2)知所求角为∠DAN,在Rt△AND中求其正弦值即可.

    考点二 平面与平面垂直的判定与性质

    4.(2018江苏,15,14分)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.

    求证:(1)AB∥平面A1B1C;

    (2)平面ABB1A1⊥平面A1BC.

    证明 (1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.

    因为AB平面A1B1C,A1B1平面A1B1C,

    所以AB∥平面A1B1C.

    (2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.

    又因为AA1=AB,所以四边形ABB1A1为菱形,

    所以AB1⊥A1B.

    因为AB1⊥B1C1,BC∥B1C1,

    所以AB1⊥BC.

    又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,

    所以AB1⊥平面A1BC,

    又因为AB1平面ABB1A1,

    所以平面ABB1A1⊥平面A1BC.

    5.(2018课标全国Ⅲ,19,12分)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.

    (1)证明:平面AMD⊥平面BMC;

    (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

    解析 本题考查平面与平面垂直的判定与性质、直线与平面平行的判定与性质.

    (1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.

    因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.

    又BC∩CM=C,所以DM⊥平面BMC.

    而DM平面AMD,故平面AMD⊥平面BMC.

    (2)当P为AM的中点时,MC∥平面PBD.

    证明如下:连接AC交BD于O.

    因为ABCD为矩形,所以O为AC中点.

    连接OP,因为P为AM中点,所以MC∥OP.

    MC平面PBD,OP平面PBD,

    所以MC∥平面PBD.

    易错警示 使用判定定理和性质定理进行推理证明时要使条件完备.

    疑难突破 解决线面平行的探索性问题的策略:

    (1)通过观察确定点或直线的位置(如中点,中位线),再进行证明.

    (2)把要得的平行当作已知条件,用平行的性质去求点、线.

    6.(2017山东,18,12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.

    (1)证明:A1O∥平面B1CD1;

    (2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

    证明 (1)取B1D1的中点O1,连接CO1,A1O1,

    由于ABCD-A1B1C1D1是四棱柱,四边形ABCD为正方形,O为AC与BD的交点,

    所以A1O1∥OC,A1O1=OC,

    因此四边形A1OCO1为平行四边形,

    所以A1O∥O1C.

    又O1C平面B1CD1,A1O平面B1CD1,

    所以A1O∥平面B1CD1.

    (2)因为AC⊥BD,E,M分别为AD和OD的中点,

    所以EM⊥BD,又A1E⊥平面ABCD,BD平面ABCD,

    所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,

    又A1E,EM平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1平面B1CD1,所以平面A1EM⊥平面B1CD1.

    方法总结 证明面面垂直的方法:

    1.面面垂直的定义;

    2.面面垂直的判定定理(a⊥β,aαα⊥β).

    易错警示 a∥b,a∥α/ b∥α.

    教师专用题组

    1.(2018浙江,8,4分)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则(  )

    A.θ1≤θ2≤θ3     B.θ3≤θ2≤θ1

    C.θ1≤θ3≤θ2     D.θ2≤θ3≤θ1

    答案 D

    2.(2019浙江,8,4分)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则(  )

    A.β<γ,α<γ   B.β<α,β<γ   C.β<α,γ<α   D.α<β,γ<β

    答案 B

    3.(2015浙江,17,15分)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.

    (1)证明:A1D⊥平面A1BC;

    (2)求二面角A1-BD-B1的平面角的余弦值.

    解析 (1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.

    因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.

    由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以A1AED为平行四边形.

    故A1D∥AE.

    又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.

    (2)作A1F⊥BD且A1F∩BD=F,连接B1F.

    由AE=EB=,∠A1EA=∠A1EB=90°,得A1B=A1A=4.

    由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等.

    由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角.

    由A1D=,A1B=4,∠DA1B=90°,得BD=3,A1F=B1F=,由余弦定理得cos∠A1FB1=-.

    4.(2014课标Ⅰ,19,12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.

    (1)证明:AC=AB1;

    (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

    解析 (1)证明:连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.

    又AB⊥B1C,所以B1C⊥平面ABO.由于AO平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.

    (2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.

    又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.

    以O为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz.

    因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.

    =,==,==.设n=(x,y,z)是平面AA1B1的法向量,

    所以可取n=(1,,).

    设m是平面A1B1C1的法向量,则

    同理可取m=(1,-,).则cos<n,m>==.

    易知二面角A-A1B1-C1为锐二面角,所以二面角A-A1B1-C1的余弦值为.

    方法点拨 在求解或证明过程中,通常会用到一些初中阶段学习的平面几何知识,如三角形中位线的性质、菱形的性质,等腰三角形的性质,相似(全等)三角形的判定与性质等,在复习时应予以关注.

    5.(2012课标,19,12分)如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.

    (1)证明:DC1⊥BC;

    (2)求二面角A1-BD-C1的大小.

    解析 (1)证明:由题设知,三棱柱的侧面为矩形.

    由于D为AA1的中点,故DC=DC1.又AC=AA1,可得D+DC2=C,所以DC1⊥DC.而DC1⊥BD,DC∩BD=D,所以DC1⊥平面BCD.又BC平面BCD,故DC1⊥BC.

    (2)由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1,

    所以CA,CB,CC1两两垂直.以C为坐标原点,的方向为x轴的正方向,的方向为y轴的正方向,||为单位长,建立如图所示的空间直角坐标系C-xyz.

    由题意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2).

    =(0,0,-1),=(1,-1,1),=(-1,0,1).

    设n=(x,y,z)是平面A1B1BD的法向量,则可取n=(1,1,0).

    同理,设m是平面C1BD的法向量,则

    可取m=(1,2,1).从而cos<n,m>==.

    又易知二面角A1-BD-C1为锐二面角,故二面角A1-BD-C1的大小为30°.

    评析 本题考查了直线与直线垂直的证明及二面角的求法.属中等难度题,运算要准确.

    【三年模拟】

    一、单项选择题(每题5分,共45分)

    1.(2020届山东寿光现代中学10月月考,4)已知两条直线a,b与两个平面α、β,b⊥α,则下列命题中正确的是(  )

    ①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.

    A.①③   B.②④   C.①④   D.②③

    答案 A

    2.(2020届山东滕州一中10月月考,5)已知α,β是不重合的平面,m,n是不重合的直线,则m⊥α的一个充分条件是(  )

    A.m⊥n,nα     B.m∥β,α⊥β

    C.n⊥α,n⊥β,m⊥β     D.α∩β=n,α⊥β,m⊥n

    答案 C

    3.(2020届广东广州执信中学10月月考,10)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,lα,lβ,则(  )

    A.α∥β,且l∥α     B.α⊥β,且l⊥β

    C.α与β相交,且交线垂直于l     D.α与β相交,且交线平行于l

    答案 D

    4.(2020届湖南长沙长郡中学第二次月考,5)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )

    A.若m∥α,n∥α,则m∥n

    B.若α⊥γ,β⊥γ,则α∥β

    C.若m∥α,n∥α,且mβ,nβ,则α∥β

    D.若m⊥α,n⊥β,且α⊥β,则m⊥n

    答案 D

    5.(2018湖北重点中学协作体4月联考,5)设m,n是平面α内的两条不同直线,l1,l2是平面β内两条相交直线,则α⊥β 的一个充分不必要条件是(  )

    A.l1⊥m,l1⊥n     B.m⊥l1,m⊥l2

    C.m⊥l1,n⊥l2     D.m∥n,l1⊥n

    答案 B

    6.(2019湖北武汉4月调研,6)已知两个平面相互垂直,给出下列命题:

    ①一个平面内已知直线必垂直于另一个平面内的任意一条直线;

    ②一个平面内已知直线必垂直于另一个平面内的无数条直线;

    ③一个平面内任意一条直线必垂直于另一个平面;

    ④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.

    其中正确命题的个数是(  )

    A.3   B.2   C.1   D.0

    答案 C

    7.(2019湖北黄冈八模(二),11)如图,AC=2R为圆O的直径,∠PCA=45°,PA垂直于圆O所在的平面,B为圆周上不与点A、C重合的点,AS⊥PC于S,AN⊥PB于N,则下列不正确的是(  )

    A.平面ANS⊥平面PBC     B.平面ANS⊥平面PAB

    C.平面PAB⊥平面PBC     D.平面ABC⊥平面PAC

    答案 B

    8.(2019福建漳州二模,8)如图,正方体ABCD-A1B1C1D1的棱AB和A1D1的中点分别为E,F,则直线EF与平面AA1D1D所成角的正弦值为(  )

    A.   B.   C.   D.

    答案 C

    9.(2020届浙江东阳中学10月月考,8)在四面体ABCD中,二面角A-BC-D的大小为60°,点P为直线BC上一动点,记直线PA与平面BCD所成的角为θ,则(  )

    A.θ的最大值为60°     B.θ的最小值为60°

    C.θ的最大值为30°     D.θ的最小值为30°

    答案 A

    二、多项选择题(每题5分,共10分)

    10.(改编题)如图,PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论中正确的是(  )

    A.PC⊥BC     B.AC⊥平面PBC

    C.平面PAB⊥平面PBC     D.平面PAC⊥平面PBC

    答案 AD

     

     

     

    11.(改编题)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中正确的是(  )

    A.AC⊥AF

    B.EF∥平面ABCD

    C.三棱锥A-BEF的体积为定值

    D.△AEF的面积与△BEF的面积相等

    答案 BC

    三、解答题(共45分)

    12.(2020届广东百校联考,20)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上的一点.

    (1)证明:平面ADE⊥平面PAB;

    (2)若PE=4EC,F是PB的中点,AD=,AB=AP=2CD=2,求直线DF与平面ADE所成角的正弦值.

    解析 (1)证明:因为PA⊥平面ABCD,AD平面ABCD,

    所以PA⊥AD.又AB⊥AD,PA∩AB=A,所以AD⊥平面PAB.

    又AD平面ADE,所以平面ADE⊥平面PAB.

    (2)由(1)知AD,AB,AP两两垂直,以A为原点,AD,AB,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系A-xyz,

    则A(0,0,0),C(,1,0),B(0,2,0),P(0,0,2),D(,0,0),F(0,1,1),则=(,0,0),=(0,0,2),=(-,1,1),由PE=4EC得==,

    =+=.设n=(x,y,z)是平面ADE的一个法向量,则

    取y=1,则n=(0,1,-2).

    设直线DF与平面ADE所成的角为θ,

    则sin θ=|cos<,n>|===,

    所以直线DF与平面ADE所成角的正弦值为.

    13.(2020届湖北黄冈9月新起点考试,19)在△ABC中,∠A=30°,∠B=90°,沿中位线DE折起后,点A对应的位置为点P,∠PDB=60°.

    (1)求证:平面PDB⊥平面DBCE;

    (2)求证:平面BPC⊥平面PCE;

    (3)求直线BP与平面PCE所成角的正弦值.

    解析 (1)证明:∵AD⊥DE,∴PD⊥DE,

    又BD⊥DE,PD平面PBD,BD平面PBD,PD∩BD=D,

    ∴DE⊥平面PBD,∵DE平面DBCE,∴平面PDB⊥平面DBCE.

    (2)证明:以D为原点,DB,DE所在的直线分别为x,y轴,建立空间直角坐标系,设PD=DB=1,BC=,则B(1,0,0),

    C,E,∴=,

    由∠PDB=60°可得P,∴=,设m=(x,y,z)是平面BPC的一个法向量,则取x=,则得m=(,0,1).

    同理可求得平面PCE的一个法向量为n=(-1,,).

    ∵m·n=0,∴m⊥n,∴平面BPC⊥平面PCE.

    (3)由(2)知,=,平面PCE的一个法向量为n=(-1,,),

    ∴cos<n,>===.∴直线BP与平面PCE所成角的正弦值为.

    14.(2019广东广州天河二模,18)如图,已知等边△ABC中,E,F分别为AB,AC边的中点,M为EF的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A'EF的位置,使平面A'EF⊥平面EFCB.

    (1)求证:平面A'MN⊥平面A'BF;

    (2)求二面角E-A'F-B的余弦值.

    解析 (1)证明:因为E,F分别为等边△ABC中AB,AC边的中点,所以EF∥BC,△AEF为等边三角形,

    所以折叠后,△A'EF也是等边三角形,且EF∥BC.因为M是EF的中点,所以A'M⊥EF.(1分)

    又平面A'EF⊥平面EFCB,A'M平面A'EF,所以A'M⊥平面EFCB,(2分)

    又BF平面EFCB,所以A'M⊥BF.(3分)

    因为CN=BC,EF∥BC且EF=BC,M为EF的中点,所以MF∥CN,MF=CN,则四边形MFCN是平行四边形,

    所以MN∥CF.在等边△ABC中,知BF⊥CF,所以BF⊥MN.(4分)

    而A'M∩MN=M,所以BF⊥平面A'MN.又因为BF平面A'BF,所以平面A'MN⊥平面A'BF.(5分)

    (2)设等边△ABC的边长为4,取BC的中点G,连接MG,由题设知MG⊥BC,由(1)知A'M⊥平面EFCB,

    又MG平面EFCB,所以A'M⊥MG,(6分)

    如图建立空间直角坐标系M-xyz,

     

    则F(-1,0,0),A'(0,0,),B(2,,0),所以=(1,0,),=(3,,0).(7分)

    设平面A'BF的法向量为n=(x,y,z),则令z=1,则n=(-,3,1).(9分)

    易知平面A'EF的一个法向量为m=(0,1,0),(10分)

    所以cos<n,m>===,(11分)

    显然二面角E-A'F-B是锐二面角,所以二面角E-A'F-B的余弦值为.(12分)

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map