- 2020年北师大版九年级数学上册第2章 2.3用公式法求解一元二次方程第2课时公式法的实际应用 同步练习(含答案) 试卷 2 次下载
- 2020年北师大版九年级数学上册第2章 2.4二次函数的应用第1课时最大面积问题 同步练习(含答案) 试卷 4 次下载
- 2020年北师大版九年级数学上册第2章 2.4用因式分解法求解一元二次方程 同步练习(含答案) 试卷 3 次下载
- 2020年北师大版九年级数学上册第2章 2.5一元二次方程的根与系数的关系 同步练习(含答案) 试卷 6 次下载
- 2020年北师大版九年级数学上册第2章 2.6应用一元二次方程第1课时一元二次方程的实际应用(一) 同步练习(含答案) 试卷 3 次下载
数学4 用因式分解法求解一元二次方程第2课时测试题
展开知识点 1 利润最大化问题
1.毕节某旅行社在十一黄金周期间接团去外地旅游,经计算所获营业额y(元)与旅行团人员x(人)之间满足关系式y=-x2+100x+28400,要使所获营业额最大,则旅行团应有( )
A.30人 B.40人
C.50人 D.55人
2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )
A.5元 B.10元 C.0元 D.36元
3.2017·贵阳模拟某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式.
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?
知识点 2 利用二次函数的最值解决其他实际问题
4.两个数的和为6,这两个数的积最大可以达到________.
5.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.
6.生物学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测量出这种植物高度的增长情况(如下表).
科学家经过猜想,推测出y与x之间是二次函数关系.
(1)求y与x之间的函数表达式;
(2)推测最适合这种植物生长的温度,并说明理由.
图2-4-12
7.如图2-4-13所示,正方形ABCD的边长为4,E,F分别是边BC,CD上的两个动点,且AE⊥EF,则AF的最小值是________.
图2-4-13
8.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小明和小华提出的问题.
图2-4-14
9.2017·安顺模拟经市场调查,某种商品在第x天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求y与x之间的函数关系式;
(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?
10.[2016·黄冈] 东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为
p=eq \b\lc\{(\a\vs4\al\c1(\f(1,4)t+30(1≤t≤24,t为整数),,-\f(1,2)t+48(25≤t≤48,t为整数),))且其日销售量y(千克)与时间t(天)的关系如下表:
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少;
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t的增大而增大,求n的取值范围.
详解
1.C 2.A
3.解:(1)根据题意,得eq \b\lc\{(\a\vs4\al\c1(65k+b=55,,75k+b=45,))解得eq \b\lc\{(\a\vs4\al\c1(k=-1,,b=120.))
∴一次函数的表达式为y=-x+120.
(2)根据题意,得W=(x-60)(-x+120)
=-x2+180x-7200
=-(x-90)2+900.
∵抛物线的开口向下,
∴当x<90时,W随x的增大而增大,
而60≤x≤87,
∴当x=87时,W最大=-(87-90)2+900=891.
∴当销售单价定为87元/件时,商场可获得最大利润,最大利润是891元.
4.9
5.20 [解析] 设果园里增种x棵橘子树,那么果园里共有(x+90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x)个橘子.∴y=(x+90)(520-4x)=-4x2+160x+46800,∴当x=-eq \f(b,2a)=-eq \f(160,2×(-4))=20时,y最大,橘子总个数最多.
6.解:(1)设y=ax2+bx+c(a≠0),选(0,49),(2,41),(-2,49)代入后得方程组
eq \b\lc\{(\a\vs4\al\c1(c=49,,4a-2b+c=49,,4a+2b+c=41,))解得eq \b\lc\{(\a\vs4\al\c1(a=-1,,b=-2,,c=49,))
∴y与x之间的函数表达式为y=-x2-2x+49.
(2)最适合这种植物生长的温度是-1 ℃.
理由:由(1)可知,当x=-eq \f(b,2a)=-1时,y取最大值50,
即说明最适合这种植物生长的温度是-1 ℃.
7.5 [解析] 在Rt△ADF中,AF2=AD2+DF2=42+(4-CF)2,若AF最小,则CF最大.设BE=x,CF=y,∵∠B=∠AEF=90°,则∠BAE+∠AEB=∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴eq \f(AB,EC)=eq \f(BE,CF),即eq \f(4,4-x)=eq \f(x,y),化简得y=eq \f(-x2+4x,4)=-eq \f(1,4)(x-2)2+1,∴当x=2时,y有最大值为1,此时DF最小,为3,由勾股定理得到AF=eq \r(AD2+DF2)=5.
8.解:(1)小华的问题解答:
设利润为W元,每个定价为x元,则W=(x-2)·[500-100(x-3)]=-100x2+1000x-1600=-100(x-5)2+900.
当W=800时,解得x=4或x=6,
又因为2×240%=4.8(元),所以x=6不符合题意,舍去,故每个定价为4元时,每天的利润为800元.
(2)小明的问题解答:
当x<5时,W随x的增大而增大.
所以当x=4.8时,W最大,为-100(4.8-5)2+900=896(元).
所以800元销售利润不是最多,每个定价为4.8元时,才会使每天利润最大.
9.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;
当50≤x≤90时,
y=(200-2x)(90-30)=-120x+12000.
(2)当1≤x<50时,二次函数图象的开口向下,对称轴为直线x=-eq \f(b,2a)=45,
∴当x=45时,y最大=-2×452+180×45+2000=6050;
当50≤x≤90时,y随x的增大而减小,
∴当x=50时,y最大=-120×50+12000=6000.
综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.
10.解:(1)依题意,得y=120-2t.
当t=30时,y=120-60=60.
答:在第30天的日销售量为60千克.
(2)设日销售利润为W元,则W=(p-20)y.
当1≤t≤24时,
W=(eq \f(1,4)t+30-20)(120-2t)=-eq \f(1,2)t2+10t+1200=-eq \f(1,2)(t-10)2+1250.
当t=10时,W最大=1250.
当25≤t≤48时,
W=(-eq \f(1,2)t+48-20)(120-2t)=t2-116t+3360=(t-58)2-4.
由二次函数的图象及性质知,当t=25时,W最大=1085.
∵1250>1085,
∴在第10天的销售利润最大,最大日销售利润为1250元.
(3)依题意,得
每天扣除捐款后的日销售利润W=(eq \f(1,4)t+30-20-n)(120-2t)=-eq \f(1,2)t2+2(n+5)t+1200-120n.
其图象对称轴为直线t=2n+10,要使W随t的增大而增大.
由二次函数的图象及性质知,
2n+10≥24,解得n≥7.
又∵n<9,
∴7≤n<9.
温度x/℃
6
4
2
0
-2
-4
-6
-8
植物高度增长量y/mm
1
25
41
49
49
39
24
1
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
时间t(天)
1
3
6
10
20
40
…
日销售量y(千克)
118
114
108
100
80
40
…
人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数第2课时精练: 这是一份人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数第2课时精练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数第2课时当堂达标检测题: 这是一份初中数学人教版九年级上册第二十二章 二次函数22.3 实际问题与二次函数第2课时当堂达标检测题,共8页。试卷主要包含了抛物线的顶点是它的最高值y=,如图,已知等内容,欢迎下载使用。
初中数学北师大版九年级下册4 二次函数的应用课时练习: 这是一份初中数学北师大版九年级下册4 二次函数的应用课时练习,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。