![人教版2020年八年级数学上册12.2三角形全等的判定第2课时用“SAS”判定三角形全等 学案(含答案)01](http://www.enxinlong.com/img-preview/2/3/5710935/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版2020年八年级数学上册12.2三角形全等的判定第2课时用“SAS”判定三角形全等 学案(含答案)02](http://www.enxinlong.com/img-preview/2/3/5710935/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级上册第十二章 全等三角形12.2 三角形全等的判定第2课时学案设计
展开1.理解和掌握全等三角形判定方法2——“SAS”.理解满足“SSA”的两个三角形不一定全等.
2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.
阅读教材P37~39,完成预习内容.
知识探究
1.两边和它们的夹角分别相等的两个三角形________(可以简写成“边角边”或“________”).
2.有两边和一个角对应相等的两个三角形________全等.
如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的两个三角形不一定全等.
自学反馈
1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )
A.∠A=∠D
B.∠E=∠C
C.∠A=∠C
D.∠ABD=∠EBC
2.如图,AO=BO,CO=DO,AD与BC交于E,∠O=40°,∠B=25°,则∠BED的度数是( )
A.60°
B.90°
C.75°
D.85°
3.已知:如图,AB、CD相交于O点,AO=CO,OD=OB.
求证:∠D=∠B.
分析:要证∠D=∠B,只要证△AOD≌△COB.
证明:在△AOD与△COB中,
eq \b\lc\{(\a\vs4\al\c1(AO=CO(已知),,∠ =∠ (对顶角相等),,OD= (已知),))
∴△AOD≌△________(SAS).
∴∠D=∠B(__________).
4.已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.
1.利用SAS证明全等时,要注意“角”只能是两组相等边的夹角;在书写证明过程时相等的角应写在中间;
2.证明过程中注意隐含条件的挖掘,如“对顶角相等”、“公共角、公共边”等.
活动1 小组讨论
例1 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.
证明:∵AB∥CD,
∴∠2=∠1.
在△CDB与△ABD中,
∵CD=AB,∠2=∠1,BD=DB,
∴△CDB≌△ABD.∴∠3=∠4.
∴AD∥BC.
可从问题出发,要证线段平行只需证角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.
例2 如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论.
解:结论:AE=CD,AE⊥CD.
理由(提示):延长AE交CD于点F,先证△ABE≌△CBD,得AE=CD,∠BAE=∠BCD.又∠AEB=∠CEF,可得∠CFE=90°,即AE⊥CD.
1.注意挖掘等腰直角三角形中的隐藏条件;
2.线段的关系分数量与位置两种关系.
活动2 跟踪训练
1.已知:如图,AB=AC,BE=CD.求证:∠B=∠C.
2.已知:如图,AB=AD,AC=AE,∠1=∠2.
求证:BC=DE.
分析已知条件,确定证三角形全等所缺少的条件,充分挖掘隐藏条件.
活动3 课堂小结
1.利用对顶角、公共角、直角用SAS证明三角形全等.
2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.
【预习导学】
知识探究
1.全等 SAS 2.不一定
自学反馈
1.D 2.B 3.AOD COB OB COB 对应角相等 4.证明:在△ABD与△ACD中,∵AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(SAS).∴∠B=∠C.
【合作探究】
活动2 跟踪训练
1.略. 2.略.
初中数学人教版八年级上册12.2 三角形全等的判定导学案: 这是一份初中数学人教版八年级上册12.2 三角形全等的判定导学案,共2页。学案主要包含了学习目标,学习重难点,学习过程,达标检测等内容,欢迎下载使用。
初中数学人教版八年级上册12.2 三角形全等的判定学案设计: 这是一份初中数学人教版八年级上册12.2 三角形全等的判定学案设计,共2页。学案主要包含了学习目标,学习重点,学习难点,学习方法等内容,欢迎下载使用。
2020-2021学年12.2 三角形全等的判定导学案: 这是一份2020-2021学年12.2 三角形全等的判定导学案,共2页。学案主要包含了目标定向,目标导学,目标达成,目标回归,目标升华等内容,欢迎下载使用。