搜索
    上传资料 赚现金
    英语朗读宝

    2020数学(理)二轮教师用书:第2部分专题7第1讲 选修4-4 坐标系与参数方程

    2020数学(理)二轮教师用书:第2部分专题7第1讲 选修4-4 坐标系与参数方程第1页
    2020数学(理)二轮教师用书:第2部分专题7第1讲 选修4-4 坐标系与参数方程第2页
    2020数学(理)二轮教师用书:第2部分专题7第1讲 选修4-4 坐标系与参数方程第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020数学(理)二轮教师用书:第2部分专题7第1讲 选修4-4 坐标系与参数方程

    展开

    

    第1讲 选修4-4 坐标系与参数方程

     极坐标与曲线的极坐标方程(5年5考)

    [高考解读] 以极坐标系下两曲线的位置关系为载体,考查极坐标的表示、极径的几何意义,极坐标与直角坐标的互化等问题,考查学生的等价转化能力、逻辑推理及数学运算的素养.
    1.(2019·全国卷Ⅲ)如图,在极坐标系Ox中,A(2,0),B,C,D(2,π),弧,,所在圆的圆心分别是(1,0),,(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.
    (1)分别写出M1,M2,M3的极坐标方程;
    (2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.
    [解](1)由题设可得,弧,,所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.
    所以M1的极坐标方程为ρ=2cos θ,M2的极坐标方程为ρ=2sin θ,M3的极坐标方程为ρ=-2cos θ.
    (2)设P(ρ,θ),由题设及(1)知
    若0≤θ≤,则2cos θ=,解得θ=;
    若≤θ≤,则2sin θ=,解得θ=或θ=;
    若≤θ≤π,则-2cos θ=,解得θ=.
    综上,P的极坐标为或或或.
    2.(2019·全国卷Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.
    (1)当θ0=时,求ρ0及l的极坐标方程;
    (2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
    [解](1)因为M(ρ0,θ0)在曲线C上,当θ0=时,
    ρ0=4sin =2.
    由已知得|OP|=|OA|cos =2.
    设Q(ρ,θ)为l上除P外的任意一点.连接OQ,
    在Rt△OPQ中,ρcos=|OP|=2.
    经检验,点P在曲线ρcos=2上.
    所以,l的极坐标方程为ρcos=2.
    (2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.
    因为P在线段OM上,且AP⊥OM,故θ的取值范围是.
    所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.
    [教师备选题]
    1.(2015·全国卷Ⅰ)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
    (1)求C1,C2的极坐标方程;
    (2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.
    [解](1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.
    (2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得
    ρ2-3ρ+4=0,解得ρ1=2,ρ2=.
    故ρ1-ρ2=,即|MN|=.
    由于C2的半径为1,所以△C2MN的面积为.
    2.(2017·全国卷Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.
    (1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;
    (2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.
    [解](1)设P的极坐标为(ρ,θ)(ρ>0),M的极坐标为(ρ1,θ)(ρ1>0).
    由题设知|OP|=ρ,|OM|=ρ1=.
    由|OM|·|OP|=16得C2的极坐标方程为ρ=4cos θ(ρ>0).
    因此C2的直角坐标方程为(x-2)2+y2=4(x≠0).
    (2)设点B的极坐标为(ρB,α)(ρB>0).
    由题设知|OA|=2,ρB=4cos α,于是△OAB的面积
    S=|OA|·ρB·sin∠AOB=4cos α·
    =2≤2+.
    当α=-时,S取得最大值2+.
    所以△OAB面积的最大值为2+.

    1.极径的几何意义及其应用
    (1)几何意义:极径ρ表示极坐标平面内点M到极点O的距离.
    (2)应用:一般应用于过极点的直线与曲线相交,所得的弦长问题,需要用极径表示出弦长,结合根与系数的关系解题.
    2.极坐标化直角坐标的常用技巧
    (1)通常要用ρ去乘方程的两边,使之出现ρ2,ρcos θ,ρsin θ的形式.
    (2)含关于tan θ的方程用公式tan θ=.

    1.(极坐标的表示)(2019·兰州模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1:ρcos θ=3,曲线C2:ρ=4cos θ.
    (1)求C1与C2交点的极坐标;
    (2)设点Q在C2上,=,求动点P的极坐标方程.
    [解](1)联立
    因为0≤θ≤,θ=,ρ=2,
    所以所求交点的极坐标为.
    (2)设P(ρ,θ),Q(ρ0,θ0)且ρ0=4cos θ0,θ0∈,
    由已知=,得
    所以ρ=4cos θ,点P的极坐标方程为ρ=10cos θ,θ∈.
    2.(极坐标同直角坐标的互化)已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos=2.
    (1)将圆O1和圆O2的极坐标方程化为直角坐标方程;
    (2)求经过两圆交点的直线的极坐标方程.
    [解](1)由ρ=2,知ρ2=4,所以x2+y2=4,
    因为ρ2-2ρcos=2,
    所以ρ2-2ρ=2,
    所以x2+y2-2x-2y-2=0.
    (2)将两圆的直角坐标方程相减,
    得经过两圆交点的直线方程为x+y=1,
    化为极坐标方程为ρcos θ+ρsin θ=1,
    即ρsin=.
    3.(极坐标的应用)(2019·郑州模拟)已知曲线C1:x2+(y-3)2=9,A是曲线C1上的动点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,以极点O为中心,将点A绕点O逆时针旋转90°得到点B,设点B的轨迹为曲线C2.
    (1)求曲线C1,C2的极坐标方程;
    (2)射线θ=(ρ>0)与曲线C1,C2分别交于P,Q两点,定点M(-4,0),求△MPQ的面积.
    [解](1)曲线C1:x2+(y-3)2=9,把代入可得,曲线C1的极坐标方程为ρ=6sin θ.
    设B(ρ,θ),则A,
    则ρ=6sin=-6cos θ.
    所以曲线C2的极坐标方程为ρ=-6cos θ.
    (2)M到直线θ=的距离为d=4sin =2,
    射线θ=与曲线C1的交点P,
    射线θ=与曲线C2的交点Q,
    所以|PQ|=3-3,
    故△MPQ的面积S=×|PQ|×d=3-3.
     曲线的参数方程(5年4考)

    [高考解读] 以直线、圆及圆锥曲线的参数方程为载体,考查参数方程同普通方程的互化,参数的几何意义,以及解析几何中的最值、范围、位置关系等问题,考查数学运算及等价转化的数学素养.
    (2018·全国卷Ⅲ)在平面直角坐标系xOy中,⊙O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l与⊙O交于A,B两点.
    (1)求α的取值范围;
    (2)求AB中点P的轨迹的参数方程.
    [解](1)⊙O的直角坐标方程为x2+y2=1.
    当α=时,l与⊙O交于两点.
    当α≠时,记tan α=k,则l的方程为y=kx-.l与⊙O交于两点当且仅当<1,解得k<-1或k>1,即α∈或α∈.
    综上,α的取值范围是.
    (2)l的参数方程为t为参数,<α<.
    设A,B,P对应的参数分别为tA,tB,tP,则tP=,且tA,tB满足t2-2tsin α+1=0.
    于是tA+tB=2sin α,tP=sin α.
    又点P的坐标(x,y)满足
    所以点P的轨迹的参数方程是
    α为参数,<α<.
    [教师备选题]
    (2014·全国卷Ⅰ)已知曲线C:+=1,直线l:(t为参数).
    (1)写出曲线C的参数方程,直线l的普通方程;
    (2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.
    [解](1)曲线C的参数方程为(θ为参数).
    直线l的普通方程为2x+y-6=0.
    (2)曲线C上任意一点P(2cos θ,3sin θ)到l的距离为d=|4cos θ+3sin θ-6|.
    则|PA|==|5sin(θ+α)-6|,
    其中α为锐角,且tan α=.
    当sin(θ+α)=-1时,|PA|取得最大值,最大值为.
    当sin(θ+α)=1时,|PA|取得最小值,最小值为.

    1.直线方程中参数t的几何意义的应用
    经过点P(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).若A,B为直线l上的两点,其对应的参数分别为t1,t2,线段AB的中点为M,点M所对应的参数为t0,则以下结论在解题中经常用到:
    (1)t0=;
    (2)|PM|=|t0|=;
    (3)|AB|=|t2-t1|;
    (4)|PA|·|PB|=|t1·t2|.
    2.求椭圆、双曲线等曲线上的点到直线的距离的最值时,往往通过参数方程引入三角函数,再借助三角函数的性质进行求解.掌握参数方程与普通方程互化的规律是求解此类问题的关键.
    3.不能忽视所给直线方程是不是直线的标准参数方程,非标准的直线参数方程中的t不具有几何意义.

    1.(参数的几何意义的应用)在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程为(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.
    (1)写出曲线C2的参数方程;
    (2)设点P(-2,3),直线l与曲线C2的两个交点分别为A,B,求+的值.
    [解](1)若将曲线C1上的点的纵坐标变为原来的倍,则曲线C2的直角坐标方程为x2+=4,
    整理得+=1,∴曲线C2的参数方程为(θ为参数).
    (2)将直线l的参数方程化为标准形式为
    (t′为参数),
    将参数方程代入+=1,得+=1,
    整理得(t′)2+18t′+36=0.
    |PA|+|PB|=|t1′+t2′|=,
    |PA||PB|=t1′t2′=.
    ∴+===.
    2.(参数方程的应用)(2019·贵阳模拟)在平面直角坐标系xOy中,直线l的参数方程为(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos.
    (1)判断直线l与曲线C的位置关系;
    (2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.
    [解](1)由消去t得y=x+4,
    由ρ=2cos得ρ=cos θ-sin θ,
    由x=ρcos θ,y=ρsin θ,ρ2=x2+y2得
    +=1,即C是以为圆心,1为半径的圆,
    圆心到直线y=x+4的距离d==5>1,
    所以直线l与曲线C相离.
    (2)圆的参数方程为
    (θ为参数),
    则x+y=sin θ+cos θ=sin,
    又由θ∈R可得-1≤sin≤1,
    则-≤x+y≤,
    所以x+y的取值范围为[-,].
     极坐标方程与参数方程的综合应用(5年4考)

    [高考解读] 主要考查极坐标方程、参数方程及直角坐标系方程之间的互化,考查利用三角函数求最值,考查利用极径的几何意义及参数的几何意义解决问题的能力.
    (2019·全国卷Ⅰ)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.
    (1)求C和l的直角坐标方程;
    (2)求C上的点到l距离的最小值.
    [解](1)因为-1<≤1,且x2+=+=1,所以C的直角坐标方程为x2+=1(x≠-1).
    l的直角坐标方程为2x+y+11=0.
    (2)由(1)可设C的参数方程为(α为参数,-π<α<π).
    C上的点到l的距离为
    =.
    当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.
    [教师备选题]
    1.(2016·全国卷Ⅲ)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.
    (1)写出C1的普通方程和C2的直角坐标方程;
    (2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
    [解](1)C1的普通方程为+y2=1,C2的直角坐标方程为x+y-4=0.
    (2)由题意,可设点P的直角坐标为(cos α,sin α).
    因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,
    d(α)=
    =,
    当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.
    2.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
    (1)写出C的普通方程;
    (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)-=0,M为l3与C的交点,求M的极径.
    [解](1)消去参数t得l1的普通方程l1:y=k(x-2);
    消去参数m得l2的普通方程l2:y=(x+2).
    设P(x,y),由题设得
    消去k得x2-y2=4(y≠0).
    所以C的普通方程为x2-y2=4(y≠0).
    (2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map