所属成套资源:2020浙江高考物理二轮专题精品教案()
2020浙江高考物理二轮讲义:专题四第三讲 电磁感应的综合应用
展开
第三讲 电磁感应的综合应用
电磁感应中的电路问题
【重难提炼】
1.电磁感应电路中的五个等效问题
2.解决电磁感应电路问题的基本步骤
(1)“源”的分析:用法拉第电磁感应定律算出E的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r.
(2)“路”的分析:根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.
(3)“式”的建立:根据E=Blv或E=n结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.
如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( )
A.PQ中电流先增大后减小
B.PQ两端电压先减小后增大
C.PQ上拉力的功率先减小后增大
D.线框消耗的电功率先减小后增大
[审题突破] 在匀强磁场中,谁运动谁是电源,则PQ中的电流为干路电流,PQ两端电压为路端电压,线框消耗的功率为电源的输出功率,再依据电路的规律求解问题.
[解析] 设PQ左侧金属线框的电阻为r,则右侧电阻为3R-r;PQ相当于电源,其电阻为R,则电路的外电阻为R外==,当r=时,R外max=R,此时PQ处于矩形线框的中心位置,即PQ从靠近ad处向bc滑动的过程中外电阻先增大后减小.PQ中的电流为干路电流I=,可知干路电流先减小后增大,选项A错误.PQ两端的电压为路端电压U=E-U内,因E=Blv不变,U内=IR先减小后增大,所以路端电压先增大后减小,选项B错误.拉力的功率大小等于安培力的功率大小,P=F安v=BIlv,可知因干路电流先减小后增大,PQ上拉力的功率也先减小后增大,选项C正确.线框消耗的电功率即为外电阻消耗的功率,因外电阻最大值为R,小于内阻R;根据电源的输出功率与外电阻大小的变化关系,外电阻越接近内阻时,输出功率越大,可知线框消耗的电功率先增大后减小,选项D错误.
[答案] C
【题组过关】
考向一 恒定感应电流的电路分析
1.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长la=3lb,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )
A.两线圈内产生顺时针方向的感应电流
B.a、b线圈中感应电动势之比为9∶1
C.a、b线圈中感应电流之比为3∶4
D.a、b线圈中电功率之比为3∶1
解析:选B.由于磁感应强度随时间均匀增大,则根据楞次定律知两线圈内产生的感应电流方向皆沿逆时针方向,则A项错误;根据法拉第电磁感应定律E=N=NS,而磁感应强度均匀变化,即恒定,则a、b线圈中的感应电动势之比为===9,故B项正确;根据电阻定律R=ρ,且L=4Nl,则==3,由闭合电路欧姆定律I=,得a、b线圈中的感应电流之比为=·=3,故C项错误;由功率公式P=I2R知,a、b线圈中的电功率之比为=·=27,故D项错误.
2.如图所示是两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域.当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E,则a、b两点间的电势差为( )
A.E B.E
C.E D.E
解析:选B.a、b间的电势差等于路端电压,而小环电阻占电路总电阻的,故Uab=E,B正确.
3.(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )
A.若圆盘转动的角速度恒定,则电流大小恒定
B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动
C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化
D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
解析:选AB.设圆盘的半径为r,圆盘转动的角速度为ω,则圆盘转动产生的电动势为E=Br2ω,可知,若转动的角速度恒定,电动势恒定,电流恒定,A项正确;根据右手定则可知,从上向下看,圆盘顺时针转动,圆盘中电流由边缘指向圆心,即电流沿a到b的方向流动,B项正确;圆盘转动方向不变,产生的电流方向不变,C项错误;若圆盘转动的角速度变为原来的2倍,则电动势变为原来的2倍,电流变为原来的2倍,由P=I2R可知,电阻R上的热功率变为原来的4倍,D项错误.
考向二 变化感应电流的电路分析
4.如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中用粗线表示),R1=4 Ω、R2=8 Ω(导轨其他部分电阻不计).导轨OACO的形状满足y=2sin(单位:m).磁感应强度B=0.2 T的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0 m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻.求:
(1)外力F的最大值;
(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;
(3)在滑动过程中通过金属棒的电流I与时间t的关系.
解析:(1)由题图容易看出,当y=0时x有两个值,即sin=0时,x1=0,x2=3.这即是O点和C点的横坐标,因而与A点对应的x值为1.5.将x=1.5代入函数y=2sin,便得A点的纵坐标,即y=2sin =2(单位:m).这就是金属棒切割磁感线产生电动势的最大有效长度.
当金属棒在O、C间运动时,R1、R2是并联在电路中的,其等效电路如图所示.其并联电阻
R并== Ω.
当金属棒运动到x位置时,其对应的长度为
y=2sin,
此时金属棒产生的感应电动势为
E=Byv=2Bvsin (单位:V),
其电流I=(单位:A).
而金属棒所受的安培力应与F相等,
即F=BIy=.
在金属棒运动的过程中,由于B、v、R并不变,故F随y的变大而变大.当y最大时F最大,即
Fmax==0.3 N.
(2)R1两端电压最大时,其功率最大.
即U=Emax时,R1上消耗的功率最大,
而金属棒上产生的最大电动势
Emax=Bymaxv=2.0 V.
这时Pmax==1.0 W.
(3)当t=0时,棒在x=0处.
设运动到t时刻,则有x=vt,
将其代入y得y=2sin,
再结合E=Byv和I=,
得I==sin
=0.75sinA.
答案:(1)0.3 N (2)1.0 W
(3)I=0.75sinA
考向三 含容电路的分析与计算
5.在同一水平面的光滑平行导轨P、Q相距l=1 m,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M、N相距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计.磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m=1×10-14 kg,电荷量q=-1×10-14 C的微粒恰好静止不动.取g=10 m/s2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:
(1)匀强磁场的方向;
(2)ab两端的路端电压;
(3)金属棒ab运动的速度大小.
解析:(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M板带正电.ab棒向右做切割磁感线运动产生感应电动势,ab棒等效于电源,感应电流方向由b→a,其a端为电源的正极,由右手定则可判断,磁场方向竖直向下.
(2)微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg=Eq
又E=,所以UMN==0.1 V
R3两端电压与电容器两端电压相等,由欧姆定律得通过R3的电流为I==0.05 A
则ab棒两端的电压为Uab=UMN+I=0.4 V.
(3)由法拉第电磁感应定律得感应电动势E=Blv
由闭合电路欧姆定律得E=Uab+Ir=0.5 V
联立解得v=1 m/s.
答案:(1)竖直向下 (2)0.4 V (3)1 m/s
电磁感应中电路问题的误区分析
(1)不能正确分析感应电动势及感应电流的方向.因产生感应电动势的那部分电路为电源部分,故该部分电路中的电流应为电源内部的电流,而外电路中的电流方向仍是从高电势到低电势.
(2)应用欧姆定律分析求解电路时,没有注意等效电源的内阻对电路的影响.
(3)对连接在电路中电表的读数不能正确进行分析,特别是并联在等效电源两端的电压表,其示数应该是路端电压,而不是等效电源的电动势.
电磁感应中的图象问题
【重难提炼】
1.题型特点
一般可把图象问题分为三类:
(1)由给定的电磁感应过程选出或画出正确的图象;
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;
(3)根据图象定量计算.
2.解题关键:弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.
3.解决图象问题的一般步骤
(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t 图象、I-t图象等;
(2)分析电磁感应的具体过程;
(3)用右手定则或楞次定律确定方向对应关系;
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式;
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;
(6)画出图象或判断图象.
(多选)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为FA,电阻R两端的电压为UR,感应电流的功率为P,它们随时间t变化图象可能正确的有( )
[审题突破] 先分别得出I、FA、UR、P与v的关系.然后对棒MN受力分析,由牛顿第二定律列方程分情况讨论棒MN的运动情况,最后依据各量与v的关系讨论得到各量与t的关系.
[解析] 设某时刻金属棒的速度为v,根据牛顿第二定律F-FA=ma,即F0+kv-=ma,即F0+v=ma,如果k>,则加速度与速度成线性关系,且随着速度增大,加速度越来越大,即金属棒运动的v-t图象的切线斜率也越来越大,由于FA=,FA-t图象的切线斜率也越来越大,感应电流、电阻两端的电压及感应电流的功率也会随时间变化得越来越快,B项正确;如果k=,则金属棒做匀加速直线运动,电动势随时间均匀增大,感应电流、电阻两端的电压、安培力均随时间均匀增大,感应电流的功率与时间的二次方成正比,没有选项符合;如果k0代表圆盘逆时针转动.已知:R=3.0 Ω,B=1.0 T,r=0.2 m.忽略圆盘、电流表和导线的电阻.
(1)根据图乙写出ab、bc段对应的I与ω的关系式;
(2)求出图乙中b、c两点对应的P两端的电压Ub、Uc;
(3)分别求出ab、bc段流过P的电流IP与其两端电压UP的关系式.
解析:(1)由题图乙可知,在ab段
I= A(-45 rad/s≤ω≤15 rad/s)
在bc段
I= A(15 rad/s0,金属棒将一直加速,A错、B对;由右手定则可知,金属棒a端电势高,则M板电势高,C项对;若微粒带负电,则静电力向上与重力反向,开始时静电力为0,微粒向下加速运动,当静电力增大到大于重力时,微粒的加速度向上,D项错.
5.如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:
(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;
(2)磁场上下边界间的距离H.
解析:(1)设磁场的磁感应强度大小为B,cd边刚进入磁场时,线框做匀速运动的速度为v1,cd边上的感应电动势为E1,由法拉第电磁感应定律,有
E1=2Blv1①
设线框总电阻为R,此时线框中电流为I1,由闭合电路欧姆定律,有
I1=②
设此时线框所受安培力为F1,有
F1=2I1lB③
由于线框做匀速运动,其受力平衡,有
mg=F1④
由①②③④式得
v1=⑤
设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得
v2=⑥
由⑤⑥式得
v2=4v1.⑦
(2)线框自释放直到cd边进入磁场前,由机械能守恒定律,有
2mgl=mv⑧
线框完全穿过磁场的过程中,由能量守恒定律,有
mg(2l+H)=mv-mv+Q⑨
由⑦⑧⑨式得
H=+28l.
答案:(1)4倍 (2)+28l
电磁感应中的能量问题
【题组过关】
1.(2019·浙江选考4月)如图所示,倾角θ=37°、间距l=0.1 m 的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处.棒ab始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x图象下的“面积”代表力F做的功,sin 37°=0.6)
(1)磁感应强度B的大小;
(2)外力F随位移x变化的关系式;
(3)在棒ab整个运动过程中,电阻R产生的焦耳热Q.
解析:(1)P=,B== T.
(2)无磁场区间0≤xQ2 q1=q2 B.Q1>Q2 q1>q2
C.Q1=Q2 q1=q2 D.Q1=Q2 q1>q2
解析:选A.设ab和bc边长分别为L1、L2,线框电阻为R,若假设穿过磁场区域的时间为t.
通过线框导体横截面的电荷量
q=It==,
因此q1=q2.
线框上产生的热量为Q,
第一次:Q1=BL1I1L2=BL1L2,
同理可以求得Q2=BL2I2L1=BL2L1,
由于L1>L2,则Q1>Q2,故A正确.
2.如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab,导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,ab在一水平恒力F作用下由静止开始向右运动的过程中( )
A.随着ab运动速度的增大,其加速度也增大
B.外力F对ab做的功等于电路中产生的电能
C.外力F做功的功率始终等于电路中的电功率
D.克服安培力做的功一定等于电路中产生的电能
解析:选D.由牛顿第二定律可得F-=ma,棒向右做加速度减小的加速运动,A错.由于在达到最终速度前F>,力F做的功等于电路中获得的电能与金属棒的动能之和,则F的功率大于克服安培力做功的功率,即大于电路中的电功率,电路中获得的电能等于克服安培力所做的功.B、C错,D对.
3.如图所示,两根电阻不计的光滑金属导轨竖直放置,导轨上端接电阻R,宽度相同的水平条形区域Ⅰ和Ⅱ内有方向垂直导轨平面向里的匀强磁场B,Ⅰ和Ⅱ之间无磁场.一导体棒两端套在导轨上,并与两导轨始终保持良好接触,导体棒从距区域Ⅰ上边界H处由静止释放,在穿过两段磁场区域的过程中,流过电阻R上的电流及其变化情况相同.下面四个图象能定性描述导体棒速度大小与时间关系的是( )
解析:选C.MN棒先做自由落体运动,当到Ⅰ区磁场时由四个选项知棒开始减速说明F安>mg,由牛顿第二定律得,F安-mg=ma,当减速时F安减小,合力减小,a也减小,速度图象中图线上各点切线斜率减小,离开Ⅰ区后棒做加速度为g的匀加速直线运动,随后进入Ⅱ区磁场,因棒在穿过两段磁场区域的过程中,流过电阻R上的电流变化情况相同,则在Ⅱ区磁场中运动情况与Ⅰ区磁场中完全相同,所以只有C项正确.
4.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面,有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F,此时( )
A.电阻R1消耗的热功率为
B.电阻R2消耗的热功率为
C.整个装置因摩擦而消耗的热功率为μmgvsin θ
D.整个装置消耗的机械功率为Fv
解析:选B.上滑速度为v时,导体棒受力如图所示,则=F,所以PR1=PR2=()2R=Fv,故选项A错误,B正确;因为Ff=μFN,FN=mgcos θ,所以PFf=Ffv=μmgvcos θ,选项C错误;此时,整个装置消耗的机械功率为P=PF+PFf=Fv+μmgvcos θ,选项D错误.
5.如图所示,电阻不计的竖直光滑金属轨道PMNQ,其PMN部分是半径为r的圆弧,NQ部分水平且足够长,匀强磁场的磁感应强度为B,方向垂直于PMNQ平面指向纸面内.一粗细均匀的金属杆质量为m,电阻为R,长为r.从图示位置由静止释放,若当地的重力加速度为g,金属杆与轨道始终保持良好接触,则下列说法中正确的是( )
A.杆在下滑过程中机械能守恒
B.杆最终不可能沿NQ匀速运动
C.杆从释放到全部滑至水平轨道过程中,产生的电能等于
D.杆从释放到全部滑至水平轨道过程中,通过杆的电荷量等于
解析:选D.杆在下滑过程中,杆与金属导轨组成闭合回路,磁通量在改变,会产生感应电流,杆将受到安培力作用,则杆的机械能不守恒,故A错误;杆最终沿水平面运动时,不产生感应电流,不受安培力作用而做匀速运动,故B错误;杆从释放到滑至水平轨道过程,重力势能减小,产生电能和杆的动能,由能量守恒定律知:杆上产生的电能小于,故C错误;通过杆与金属导轨所组成的闭合回路的磁通量的变化量为ΔΦ=B,根据推论q=,得到通过杆的电荷量为q=,故D正确.
6.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B.一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则( )
A.如果B变大,vm将变大
B.如果α变大,vm将变大
C.如果R变大,vm将变大
D.如果m变小,vm将变大
解析:选BC.金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力FA作用,FA=BIl=,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,受力分析如图所示,根据牛顿第二定律,得mgsin α-=ma,当a→0时,v→vm,解得vm=,故选B、C.
7.(多选)如图所示,边长为L、电阻不计的n匝正方形金属线框位于竖直平面内,连接的小灯泡的额定功率、额定电压分别为P、U,线框及小灯泡的总质量为m,在线框的下方有一匀强磁场区域,区域宽度为l,磁感应强度方向与线框平面垂直,其上、下边界与线框底边均水平.线框从图示位置开始静止下落,穿越磁场的过程中,小灯泡始终正常发光.则( )
A.有界磁场宽度l