所属成套资源:2020浙江新高考数学二轮复习教师用书精品教案
2020浙江新高考数学二轮复习教师用书:专题四 3第3讲 空间向量与立体几何
展开
第3讲 空间向量与立体几何
利用空间向量证明平行、垂直及求空间角
[核心提炼]
1.利用直线的方向向量与平面的法向量证明空间平行、垂直
设直线l的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=(a2,b2,c2),υ=(a3,b3,c3),则有:
(1)线面平行
l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c2=0.
(2)线面垂直
l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2.
(3)面面平行
α∥β⇔μ∥υ⇔μ=λυ⇔a2=λa3,b2=λb3,c2=λc3.
(4)面面垂直
α⊥β⇔μ⊥υ⇔μ·υ=0⇔a2a3+b2b3+c2c3=0.
2.利用直线的方向向量与平面的法向量求空间角
设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为μ=(a3,b3,c3),υ=(a4,b4,c4)(以下相同).
(1)线线夹角
设l,m的夹角为θ,则
cos θ==.
(2)线面夹角
设直线l与平面α的夹角为θ,
则sin θ==|cos〈a,μ〉|.
(3)面面夹角
设平面α、β的夹角为θ,
则|cos θ|==|cos〈μ,υ〉|.
[典型例题]
(1)如图,在直三棱柱ADEBCF中,平面ABFE和平面ABCD 都是正方形且互相垂直,M为AB的中点,O为DF的中点.运用向量方法证明:
①OM∥平面BCF;
②平面MDF⊥平面EFCD.
(2)(2018·高考浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
①证明:AB1⊥平面A1B1C1;
②求直线AC1与平面ABB1所成的角的正弦值.
【解】 (1)证明:由题意知,AB,AD,AE两两垂直,以A为原点建立如图所示的空间直角坐标系.
设正方形边长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),F(1,0,1),M,O.
①=,=(-1,0,0),
所以·=0,所以⊥.
因为棱柱ADEBCF是直三棱柱,所以AB⊥平面BCF,所以是平面BCF的一个法向量,
又OM⊄平面BCF,所以OM∥平面BCF.
②设平面MDF与平面EFCD的法向量分别为n1=(x1,y1,z1),n2=(x2,y2,z2).
因为=(1,-1,1),=,=(1,0,0),
由n1·=n1·=0,
得解得
令x1=1,则n1=.
同理可得n2=(0,1,1).
因为n1·n2=0,所以平面MDF⊥平面EFCD.
(2)①证明:如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系Oxyz.
由题意知各点坐标如下:
A(0,-,0),B(1,0,0),A1(0,-,4),B1(1,0,2),C1(0,,1).
因此=(1,,2),=(1,,-2).
=(0,2,-3).
由·=0得AB1⊥A1B1.
由·=0得AB1⊥A1C1.
所以AB1⊥平面A1B1C1.
②设直线AC1与平面ABB1所成的角为θ.由①可知=(0,2,1),=(1,,0),=(0,0,2).
设平面ABB1的法向量n=(x,y,z).
由即可取n=(-,1,0).
所以sin θ=|cos,n|==.
因此,直线AC1与平面ABB1所成的角的正弦值是.
(1)利用空间向量证明平行与垂直的步骤
①建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系.
②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素.
③通过空间向量的运算研究平行、垂直关系.
④根据运算结果解释相关问题.
(2)运用空间向量求空间角的一般步骤
①建立恰当的空间直角坐标系;②求出相关点的坐标;
③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.
(3)求空间角的注意点
①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.
②所求的二面角不一定是两平面的法向量的夹角,有可能为两法向量夹角的补角.
[对点训练]
1.(2019·绍兴市柯桥区高三期中考试)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BCE,BE⊥CE,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(1)求证:GF∥平面ADE;
(2)求GF与平面ABE所成角的正切值.
解:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,
所以GH∥AB,且GH=AB,
又F是CD中点,所以DF=CD,
由四边形ABCD是矩形得,AB∥CD,AB=CD,
所以GH∥DF,且GH=DF.所以四边形HGFD是平行四边形,
所以GF∥DH,又DH⊂平面ADE,GF⊄平面ADE,
所以GF∥平面ADE.
(2)如图,在平面BEC内,过B作BQ∥EC,
因为BE⊥CE,所以BQ⊥BE,
又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ,
以B为原点,BE、BQ、BA所在直线分别为x,y,z轴,建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1),G(1,0,0),=(1,2,1),平面ABE的法向量n=(0,1,0),
设GF与平面ABE所成的角为θ,
则sin θ==,
所以cos θ==,
所以tan θ===.
所以GF与平面ABE所成角的正切值为.
2.(2019·宁波市镇海中学高考模拟)在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE∶EB=CF∶FA=CP∶PB=1∶2.如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1EFB成直二面角,连接A1B、A1P(如图(2)).
(1)求证:A1E⊥平面BEP;
(2)求二面角BA1PE的余弦值.
解:(1)证明:在图(1)中,取BE的中点D,连接DF,
因为AE∶EB=CF∶FA=1∶2,所以AF=AD=2,
而∠A=60°,所以△ADF为正三角形.
又AE=DE=1,所以EF⊥AD.
在图(2)中,A1E⊥EF,BE⊥EF,
所以∠A1EB为二面角A1EFB的一个平面角,
由题设条件知此二面角为直二面角,所以A1E⊥平面BEP.
(2)分别以EB、EF、EA1所在直线为x、y、z轴建立空间直角坐标系,
则E(0,0,0),B(2,0,0),P(1,,0),A1(0,0,1),
=(0,0,1),=(1,,0),=(-2,0,1),=(-1,,0).
设平面EA1P的法向量为m=(x,y,z),
则,
取y=-1,得m=(,-1,0);
设平面BA1P的法向量为n=(x′,y′,z′),
则,取y′=1,得n=(,1,2).
所以cos〈m,n〉===,
所以二面角BA1PE的余弦值为.
立体几何中的探索性问题
[核心提炼]
探索性问题主要考两类问题
(1)条件探索型问题;
(2)存在探索型问题.
探索性问题求解思路为利用空间向量的坐标运算,建立目标函数或目标方程,将问题转化为代数问题解决.
[典型例题]
(2019·浙江高考冲刺卷)如图所示的几何体ABCDE中,EA⊥平面ABC,EA∥DC,AB⊥AC,EA=AB=AC=2DC,M是线段BD上的动点.
(1)当M是BD的中点时,求证:BC⊥平面AME;
(2)是否存在点M,使得直线BD与平面AMC所成的角为60°,若存在,确定点M的位置;若不存在,请说明理由.
【解】 (1)证明:因为EA⊥平面ABC,AB⊥AC,
所以直线AB,AC,AE两两垂直,以A为原点,以AB,AC,AE所在直线为坐标轴建立如图空间直角坐标系Axyz,设CD=1,则AB=AC=AE=2,
所以A(0,0,0),B(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),
因为M是BD中点,所以M,
所以=(0,0,2),=,
=(-2,2,0),
所以·=0,·=0,
所以AE⊥BC,AM⊥BC,
又AM⊂平面AME,AE⊂平面AME,AE∩AM=A,
所以BC⊥平面AME.
(2)由(1)得,=(-2,2,1),=(0,2,0),=(2,0,0),
设=λ=(-2λ,2λ,λ)(0