2020版高考一轮复习物理通用版讲义:第五章第2节动能定理及其应用
展开
第2节 动能定理及其应用
一、动能
1.定义:物体由于运动而具有的能量。
2.公式:Ek=mv2。
3.单位:焦耳(J),1 J=1 N·m=1 kg·m2/s2。
4.矢标性:动能是标量,只有正值。
5.相对性:由于速度具有相对性,所以动能的大小与参考系的选取有关。中学物理中,一般选取地面为参考系。
二、动能定理
1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
2.表达式:W=mv22-mv12。
3.物理意义:合外力的功是物体动能变化的量度。
[深化理解]
(1)W>0,物体的动能增加;W<0,物体的动能减少;W=0,物体的动能不变。
(2)动能定理研究的对象是单一物体(质点)或者是可以看成单一物体(质点)的物体系。对于运动状态不同的物体,应分别应用动能定理列式求解。
(3)动能是标量,mv2中的v指物体的合速度,动能定理中的功指所有力做的总功,所以不能把速度分解到某个力的方向上应用动能定理。
[基础自测]
一、判断题
(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化。(√)
(2)动能不变的物体一定处于平衡状态。(×)
(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零。(√)
(4)物体在合外力作用下做变速运动时,动能一定变化。(×)
(5)物体的动能不变,所受的合外力必定为零。(×)
(6)做自由落体运动的物体,动能与时间的二次方成正比。(√)
二、选择题
1.[鲁科版必修2 P27 T1改编](多选)关于动能,下列说法正确的是( )
A.公式Ek=mv2中的速度v一般是物体相对于地面的速度
B.动能的大小由物体的质量和速率决定,与物体运动的方向无关
C.物体以相同的速率向东和向西运动,动能的大小相等但方向不同
D.物体以相同的速率做匀速直线运动和曲线运动,其动能不同
解析:选AB 动能是标量,与速度的大小有关,而与速度的方向无关。公式中的速度一般是相对于地面的速度,故A、B正确。
2.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔEk为( )
A.Δv=0 B.Δv=12 m/s
C.ΔEk=1.8 J D.ΔEk=0
解析:选BD 取初速度方向为正方向,则Δv=|(-6)-6|m/s=12 m/s,由于速度大小没变,动能不变,故动能变化量ΔEk=0,故选项B、D正确。
3.如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面。设小球在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,不计小球与弹簧碰撞过程中的能量损失,则弹簧被压缩至C点过程中,弹簧对小球做的功为( )
A.mgh-mv2 B.mv2-mgh
C.mgh+mv2 D.mgh
解析:选A 小球从A点运动到C点的过程中,重力和弹簧弹力对小球做负功,由于斜面支持力与位移方向始终垂直,则支持力对小球不做功,由动能定理可得WG+WF=0-mv2,重力做功为WG=-mgh,则弹簧弹力对小球做的功为WF=mgh-mv2,A正确。
高考对本节内容的考查,主要集中在对动能概念及动能变化量的理解,并能应用动能定理解决一些实际问题,考查形式有选择题(难度中等),也有计算题(难度较大)。
考点一 对动能定理的理解[基础自修类]
[题点全练]
1.[对动能、动能定理的理解]
关于动能概念及动能定理表达式W=Ek2-Ek1的说法中正确的是( )
A.若物体速度在变化,则动能一定在变化
B.速度大的物体,动能一定大
C.W=Ek2-Ek1表示功可以变成能
D.动能的变化可以用合力做的功来量度
解析:选D 速度是矢量,而动能是标量,若物体速度只改变方向,不改变大小,则动能不变,A错误;由Ek=mv2知B错误;动能定理表达式W=Ek2-Ek1表示动能的变化可用合力做的功量度,但功和能是两个不同的概念,有着本质的区别,故C错误,D正确。
2.[由合力做功分析物体动能的变化量]
(多选)如图所示,甲、乙两个质量相同的物体,用大小相等的力F分别拉它们在水平面上从静止开始运动相同的距离s。甲在光滑水平面上,乙在粗糙水平面上。下列关于力F对甲、乙做的功和甲、乙两物体获得的动能的说法中正确的是( )
A.力F对甲做功多
B.力F对甲、乙两个物体做的功一样多
C.甲物体获得的动能比乙大
D.甲、乙两个物体获得的动能相同
解析:选BC 由W=Flcos α=Fs可知,两种情况下力F对甲、乙两个物体做的功一样多,A错误,B正确;根据动能定理,对甲有:Fs=Ek1,对乙有:Fs-Ffs=Ek2,可知Ek1>Ek2,C正确,D错误。
3.[应用动能定理分析合力做功及某个力做功问题]
(多选)如图所示,某人通过光滑滑轮将质量为m的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面。物体上升的高度为h,到达斜面顶端的速度为v,则在此过程中( )
A.物体所受的合力做功为mgh+mv2
B.物体所受的合力做功为mv2
C.人对物体做的功为mgh
D.人对物体做的功大于mgh
解析:选BD 对物体应用动能定理可得W合=W人-mgh=mv2,故W人=mgh+mv2,B、D选项正确。
[名师微点]
1.动能与动能的变化的区别
(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量。
(2)动能没有负值,而动能变化量有正负之分。ΔEk>0表示物体的动能增加,ΔEk<0表示物体的动能减少。
2.对动能定理的理解
(1)做功的过程就是能量转化的过程,动能定理表达式中“=”的意义是一种因果关系在数值上相等的符号。
(2)动能定理中的“力”指物体受到的所有力,既包括重力、弹力、摩擦力,也包括电场力、磁场力或其他力,功则为合力所做的总功。
考点二 动能定理的应用[师生共研类]
1.应用动能定理的流程
2.应用动能定理的注意事项
(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。
(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。
(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。
(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。
[典例] (2017·上海高考)如图,与水平面夹角θ=37°的斜面和半径R=0.4 m的光滑圆轨道相切于B点,且固定于竖直平面内。滑块从斜面上的A点由静止释放,经B点后沿圆轨道运动,通过最高点C时轨道对滑块的弹力为零。已知滑块与斜面间动摩擦因数μ=0.25。(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)滑块在C点的速度大小vC;
(2)滑块在B点的速度大小vB;
(3)A、B两点间的高度差h。
[解析] (1)在C点滑块竖直方向所受合力提供向心力
mg=
解得vC==2 m/s。
(2)对B→C过程:滑块机械能守恒
mvB2=mvC2+mgR(1+cos 37°)
解得vB==4.29 m/s。
(3)滑块在A→B的过程,利用动能定理:
mgh-μmgcos 37°·=mvB2-0
代入数据解得h=1.38 m。
[答案] (1)2 m/s (2)4.29 m/s (3)1.38 m
[延伸思考]
(1)求A、B两点间的高度差h时,试以滑块从A→B→C的过程,应用动能定理求解。
(2)若斜面是光滑的,滑块通过最高点C时轨道对滑块的弹力为零,则A、B间的高度差h为多大?
提示:(1) 滑块从A→B→C,由动能定理得mgh-μmgcos 37°·-mg(R+Rcos 37°)=mvC2-0,代入数据求得h=1.38 m。
(2)由动能定理得mgh-mg(R+Rcos 37°)=mvC2-0,
代入数据求得h=0.92 m。
[一题悟通]
例题及延伸思考旨在让考生清楚:
(1)运用动能定理解决问题时,选择合适的研究过程能使问题得以简化。当物体的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部子过程作为研究过程。
(2)当选择全部子过程作为研究过程,涉及重力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点:①重力做的功取决于物体的初、末位置,与路径无关;②大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积。
[题点全练]
1.[多过程直线运动问题]
如图所示,固定斜面倾角为θ,整个斜面分为AB、BC两段,且1.5AB=BC。小物块P(可视为质点)与AB、BC两段斜面之间的动摩擦因数分别为μ1、μ2。已知P由静止开始从A点释放,恰好能滑动到C点而停下,那么θ、μ1、μ2间应满足的关系式是( )
A.tan θ= B.tan θ=
C.tan θ=2μ1-μ2 D.tan θ=2μ2-μ1
解析:选A P由A点释放后受重力、支持力、滑动摩擦力,设斜面AC长为L,P由A点释放,恰好能滑动到C点而停下,由动能定理得mgLsin θ-μ1mgcos θ×L-μ2mgcos θ×L=0,解得tan θ=,A正确。
2.[直线、圆周、平抛运动的多过程组合问题]
(多选)如图所示,一遥控电动赛车(可视为质点)从A点由静止以恒定的功率沿水平地面向右加速运动,当到达固定在竖直面内的光滑半圆轨道最低点B时关闭发动机,由于惯性,赛车继续沿半圆轨道运动,并恰好能通过最高点C(BC为半圆轨道的竖直直径)。已知赛车的质量为m,半圆轨道的半径为R,A、B两点间的距离为1.5R,赛车在地面上运动时受到的阻力大小恒为mg。不计空气阻力,重力加速度为g。下列判断正确的是( )
A.赛车通过C点后落回地面的位置到B点的距离为2R
B.赛车通过B点时的速度大小为2
C.赛车从A点运动到B点的过程中,其电动机所做的功为
D.要使赛车能滑过B点并沿半圆轨道滑回地面,其电动机所做的功W电需满足的条件为<W电≤
解析:选AD 赛车恰好通过C点,由mg=m,可得vC=,赛车离开C点后做平抛运动,落点位置到B点的距离x=vC· =2R,选项A正确。由B点到C点的过程,应用动能定理得:-mg·2R=mvC2-mvB2,可得:vB=,选项B错误。由A点到B点的过程,应用动能定理可得:W电-mg·1.5R=mvB2,可计算得出电动机做的功W电=3mgR,选项C错误。当赛车刚好运动到B点时,电动机做的功为W电1,由动能定理得:W电1-mg·1.5R=0,W电1=mgR;当赛车刚好运动到与圆心等高位置的过程中,电动机做的功为W电2,由动能定理得:W电2-mg·1.5R-mgR=0,则W电2=mgR;故要
使赛车滑过B点并沿半圆轨道滑回地面,其电动机所做的功W电需满足的条件<W电≤,选项D正确。
3.[动能定理应用于多过程往复运动问题]
如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相切,C为切点,圆弧轨道的半径为R,斜面的倾角为θ。现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动。已知圆弧轨道的圆心O与A、D在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:
(1)滑块第一次滑至左侧圆弧上时距A点的最小高度差h;
(2)滑块在斜面上能通过的最大路程s。
解析:(1)滑块从D到达左侧最高点F经历DC、CB、BF三个过程,现以DF整个过程为研究过程,运用动能定理得:mgh-μmgcos θ·=0,
解得h=。
(2)通过分析可知,滑块最终滑至C点的速度为0时对应在斜面上的总路程最大,由动能定理得:
mgRcos θ-μmgcos θ·s=0,
解得s=。
答案:(1) (2)
考点三 动能定理的图像问题[师生共研类]
1.常与动能定理结合的四类图像
v t图 | 由公式x=vt可知,v t图线与坐标轴围成的面积表示物体的位移 |
at图 | 由公式Δv=at可知,at图线与坐标轴围成的面积表示物体速度的变化量 |
Fx图 | 由公式W=Fx可知,Fx图线与坐标轴围成的面积表示力所做的功 |
Pt图 | 由公式W=Pt可知,Pt图线与坐标轴围成的面积表示力所做的功 |
2.解决物理图像问题的基本步骤
[典例] 如图甲所示,一滑块从平台上A点以初速度v0向右滑动,从平台上滑离后落到地面上的落地点离平台的水平距离为s。多次改变初速度的大小,重复前面的过程,根据测得的多组v0和s,作出s2v02图像如图乙所示。滑块与平台间的动摩擦因数为0.3,重力加速度g=10 m/s2。求平台离地的高度h及滑块在平台上滑行的距离d。
[解析] 设滑块滑到平台边缘时的速度为v,根据动能定理得:
-μmgd=mv2-mv02
滑块离开平台后做平抛运动,则有:
h=gt2
s=vt
联立以上三式得:s2=v02-4μhd
图像的斜率:==0.2
解得:h=1 m
当s2=0时,v02=12,解得:d=2 m。
[答案] 1 m 2 m
动能定理与图像结合问题的分析方法
(1)首先看清所给图像的种类(如vt图像、Ft图像、Ekt图像等)。
(2)挖掘图像的隐含条件,得出所需要的物理量,如由vt图像所包围的“面积”求位移,由Fx图像所包围的“面积”求功等。
(3)分析有哪些力做功,根据动能定理列方程,求出相应的物理量。
[题点全练]
1.[动能定理与at图像的综合]
用传感器研究质量为2 kg的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s内物体的加速度随时间变化的关系如图所示。下列说法正确的是( )
A.0~6 s内物体先向正方向运动,后向负方向运动
B.0~6 s内物体在4 s时的速度最大
C.物体在2~4 s内速度不变
D.0~4 s内合力对物体做的功等于0~6 s内合力对物体做的功
解析:选D at图线与坐标轴围成的“面积”等于速度的变化量,由题给图像可知,0~6 s内速度变化量为正,物体速度方向不变,物体在0~5 s内一直加速,5 s时速度最大,A、B均错误;2~4 s内物体的加速度不变,做匀加速直线运动,C错误;由题图可知,t=4 s时和t=6 s时物体速度大小相等,由动能定理可知,物体在0~4 s内和0~6 s内动能变化量相等,合外力做功也相等,D正确。
2.[动能定理与vt、Pt图像的综合]
(多选)放在粗糙水平地面上质量为0.8 kg的物体受到水平拉力的作用,在0~6 s内其速度与时间的关系图像和该拉力的功率与时间的关系图像分别如图甲、乙所示。下列说法中正确的是( )
A.0~6 s内拉力做的功为140 J
B.物体在0~2 s内所受的拉力为4 N
C.物体与粗糙水平地面间的动摩擦因数为0.5
D.合外力在0~6 s内做的功与0~2 s内做的功相等
解析:选AD 由P=Fv可知,物体在0~2 s内所受的拉力F== N=6 N,在2~6 s内所受的拉力F′== N=2 N,B错误;拉力在0~6 s内做的总功W=Fx1+
F′x2=6××2 J+2×10×4 J=140 J,A正确;由物体在2~6 s内做匀速运动可知,F′=μmg,可求得μ=0.25,C错误;由动能定理可知,物体所受的合外力在0~6 s内所做的功与0~2 s内所做的功均为mv2=40 J,D正确。
3.[动能定理与Fx图像的综合]
如图甲所示,长为4 m的水平轨道AB与半径为R=0.6 m的竖直半圆弧轨道BC在B处相连接。有一质量为1 kg的滑块(大小不计)从A处由静止开始受水平向右的力F作用,F的大小随位移变化的关系如图乙所示。滑块与AB间的动摩擦因数μ=0.25,与BC间的动摩擦因数未知,g取10 m/s2,求:
(1)滑块到达B处时的速度大小;
(2)滑块在水平轨道AB上运动前2 m过程所用的时间;
(3)若到达B点时撤去力F,滑块沿半圆弧轨道内侧上滑,并恰好到达最高点C,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?
解析:(1)对滑块从A到B的过程,由动能定理得
F1x1+F3x3-μmgx=mvB2
解得vB=2 m/s。
(2)在前2 m内,有F1-μmg=ma,且x1=at12,
解得t1= s。
(3)当滑块恰好能到达最高点C时,有mg=m
对滑块从B到C的过程,由动能定理得
W-mg×2R=mvC2-mvB2
联立解得W=-5 J。
即滑块克服摩擦力做的功为5 J。
答案:(1)2 m/s (2) s (3)5 J
“专项研究”拓视野——测定动摩擦因数的三种方法
动摩擦因数是一个重要的物理量,测定动摩擦因数已成为近几年高考实验命题的热点。其测量方法主要有以下三种:①利用平衡条件测定;②利用动力学观点测定;③利用能量观点测定。现分述如下:
方法一 利用平衡条件测定动摩擦因数
[例1] 某同学在做“测定滑块与木板间动摩擦因数”的实验时,设计了两种实验方案。
图1
方案一:木板固定,用弹簧测力计拉动滑块,如图1(a)所示。
方案二:用弹簧测力计钩住滑块,用力拉动木板,如图1(b)所示。
除了实验必需的弹簧测力计、滑块、木板、细线外,该同学还准备了若干重量均为2.0 N的砝码。试分析下列问题:
(1)上述两种方案中,你认为较合理的方案是__________________________________
(选填“方案一”或“方案二”),理由是____________________________________。
(2)该同学选用较合理的方案后,在滑块上加放砝码,改变滑块对木板的压力,共进行了5次实验,部分实验数据如下表所示:
实验次数 | 1 | 2 | 3 | 4 | 5 |
砝码对滑块的压力F/N | 0 | 2.0 | 4.0 | 6.0 | 8.0 |
弹簧测力计读数Ff/N | 1.5 |
| 2.5 | 2.9 | 3.5 |
①第2次实验弹簧测力计读数如图2所示,将此次实验中弹簧测力计的拉力大小读出并填入上表;
②请根据实验数据在图3中作出FfF关系图像;
③由所作图像可知,滑块的重力为G=________N,滑块与木板间的动摩擦因数为μ=________。
[解析] (1)较合理的方案是方案二,因为对于方案一,只有当滑块匀速运动时弹簧测力计的读数才等于滑块与木板之间的摩擦力大小,在实际操作中很难用弹簧测力计拉着滑块做匀速直线运动。而对于方案二,只要木板运动,弹簧测力计的读数就等于滑块与木板之间的滑动摩擦力,即木板向左运动的快慢不会引起弹簧测力计的示数变化。
(2)①弹簧测力计的读数为Ff=2.0 N。
②根据实验数据所作的图像如图所示。
③在方案二中,滑块受到的滑动摩擦力为Ff=μ(F+G)=μF+μG,可见FfF图像的斜率k即滑块与木板之间的动摩擦因数μ,图像在纵轴上的截距为滑块重力与动摩擦因数的乘积。根据数学知识可求得图像的斜率为k=0.25,所以滑块与木板间的动摩擦因数为μ=0.25。
图像在纵轴上的截距为b=1.5 N,由图像截距的物理意义可求得,滑块重力为G===6.0 N。
[答案] (1)方案二 理由见解析 (2)①2.0 ②见解析图 ③6.0 0.25
[关键点拨]
(1)采用方案二时,无论木板是做匀速还是加速运动,弹簧测力计的示数均为滑块所受的摩擦力大小。
(2)本题中Ff=μFN≠μF,这也是FfF图像不过原点的原因。
方法二 利用动力学观点测定动摩擦因数
[例2] 某同学设计了如图甲所示的实验装置研究动摩擦因数。他在轨道水平和倾斜的两种情况下分别做了实验,得到了两条aF图线,如图乙所示。由图可知滑块和位移传感器发射部分的总质量m=________kg;滑块和轨道间的动摩擦因数μ=________。(重力加速度g取10 m/s2,最大静摩擦力等于滑动摩擦力)
[解析] 当轨道水平时,根据牛顿第二定律得a==-μg,可知对应下面那条图线,斜率k==2 kg-1,解得m=0.5 kg,纵轴截距的绝对值μg=2 m·s-2,解得μ=0.2。
[答案] 0.5 0.2
[关键点拨]
用动力学观点来测定动摩擦因数时要先求出联系运动学与力学的桥梁,即加速度,然后建立与滑动摩擦力相关的动力学方程,即可求出动摩擦因数。
方法三 利用能量观点测定动摩擦因数
[例3] 为了测量滑块与水平桌面间的动摩擦因数,某小组设计了如图甲所示的实验装置,其中挡板可固定在桌面上,轻弹簧左端与挡板相连,图中桌面高为h,O1、O2、A、B、C点在同一水平线上。已知重力加速度为g,空气阻力忽略不计。
实验过程一:挡板固定在O1点,推动滑块压缩弹簧,滑块移到A处,测量O1A的距离,如图甲所示。滑块由静止释放,落在水平面上的P点,测出P点到桌面右端的水平距离为x1。
实验过程二:将挡板的固定点移到距O1点距离为d的O2点,如图乙所示,推动滑块压缩弹簧,滑块移到C处,使O2C的距离与O1A的距离相等。滑块由静止释放,落在水平面上的Q点,测出Q点到桌面右端的水平距离为x2。
(1)为完成本实验,下列说法中正确的是________。
A.必须测出滑块的质量 B.必须测出弹簧的劲度系数
C.弹簧的压缩量不能太小 D.必须测出弹簧的原长
(2)写出动摩擦因数的表达式μ=________。(用题中所给物理量的符号表示)
(3)小红在进行实验过程二时,发现滑块未能滑出桌面。为了测量滑块与水平桌面间的动摩擦因数,还需测量的物理量是_______________________________________________。
(4)某同学认为,不测量桌面高度,改用秒表测出滑块从飞离桌面到落地的时间,也可测出滑块与水平桌面间的动摩擦因数。此实验方案________。(选填“可行”或“不可行”)
[解析] (1)滑块离开桌面后做平抛运动,平抛运动的时间:t= ,滑块飞行的距离:x=vt,
所以滑块第1次离开桌面时的速度:
v1=x1 ①
滑块第2次离开桌面时的速度:
v2=x2 ②
滑块第1次滑动的过程中,弹簧的弹力和摩擦力做功,设弹簧做的功是W1,AB之间的距离是s,则:
W1-μmgs=mv12 ③
滑块第2次滑动的过程中,
W1-μmg(s+d)=mv22 ④
联立①②③④可得:μmgd=m(v12-v22)
即:μ=。由此表达式可知,要测定动摩擦因数,与弹簧的长度、弹簧的劲度系数、以及滑块的质量都无关。要想让滑块顺利滑出桌面,弹簧的压缩量不能太小。故C正确。
(2)由(1)知μ=。
(3)在进行实验过程二时,若滑块未能滑出桌面,则可以认为滑块的末速度是0。为了测量小滑块与水平桌面间的动摩擦因数,还需要测量出滑块停止滑动的位置到B点的距离。
(4)改用秒表测小滑块从飞离桌面到落地的时间,此实验方案是不可行的,原因是滑块在空中飞行时间很短,难以把握计时起点和终点,秒表测时间误差太大。
[答案] (1)C (2) (3)滑块停止滑动的位置到B点的距离 (4)不可行
[关键点拨]
在利用能量的观点测定动摩擦因数时,关键点是求出摩擦力以外的力所做的功,而这些功最终又是通过摩擦力来消耗的,以此将摩擦力以外的力做的功与摩擦力做的功建立等量关系,最后求出动摩擦因数。