所属成套资源:2020版新设计一轮复习数学(理)通用版讲义
2020版新设计一轮复习数学(理)通用版讲义:第一章第二节命题及其关系、充分条件与必要条件
展开第二节命题及其关系、充分条件与必要条件1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系四种命题间的相互关系四种命题的真假关系(1)两个命题互为逆否命题,它们具有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系3.充分条件、必要条件的判定❷ 充分条件与必要条件的定义从集合角度理解若p⇒q,则p是q的充分条件,q是p的必要条件p成立的对象的集合为A,q成立的对象的集合为Bp是q的充分不必要条件p⇒q且qpA是B的真子集集合与充要条件的关系❸p是q的必要不充分条件p q且q⇒pB是A的真子集p是q的充要条件p⇔qA=Bp是q的既不充分也不必要条件p q且qpA,B互不包含否命题对题设和结论都进行否定.在判断充分、必要条件的时候,一定要从p能否推出q,q能否推出p两方面去判断:对于q⇒p,要能够证明,而对于p q,只需举一反例即可.小可以推大,大不可以推小,如x>2(小范围)⇒x>1(大范围),x>1(大范围) x>2(小范围).[熟记常用结论]1.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).2.利用互为逆否命题“同真、同假”的特点,可得:(1)p⇒q等价于綈q⇒綈p;(2)qp等价于綈p綈q.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)“x2+2x-8<0”是命题.( )(2)一个命题非真即假.( )(3)四种形式的命题中,真命题的个数为0或2或4.( )答案:(1)× (2)√ (3)√二、选填题1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是( )A.命题p的逆命题是“若x<a2+b2,则x<2ab”B.命题p的逆命题是“若x<2ab,则x<a2+b2”C.命题p的否命题是“若x<a2+b2,则x<2ab”D.命题p的否命题是“若x≥a2+b2,则x<2ab”解析:选C 命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A、B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误.2.“sin α=cos α”是“cos 2α=0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 因为cos 2α=cos2α-sin2α=0,所以sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选A.3.原命题“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0 B.1C.2 D.4解析:选C 当c=0时,ac2=bc2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.4.(2019·青岛模拟)命题“若a,b都是偶数,则ab是偶数”的逆否命题为______________________.答案:若ab不是偶数,则a,b不都是偶数5.“x(x-1)=0”是“x=1”的________条件(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析:x(x-1)=0⇒x=0或x=1,即x(x-1)=0不一定有x=1成立;但x=1能推出x(x-1)=0成立.故“x(x-1)=0”是“x=1”的必要不充分条件.答案:必要不充分考点一[基础自学过关] 命题及其关系[题组练透]1.命题“若x2+y2=0(x,y∈R),则x=y=0”的逆否命题是( )A.若x≠y≠0(x,y∈R),则x2+y2=0B.若x=y≠0(x,y∈R),则x2+y2≠0C.若x≠0且y≠0(x,y∈R),则x2+y2≠0D.若x≠0或y≠0(x,y∈R),则x2+y2≠0解析:选D x2+y2=0的否定为x2+y2≠0;x=y=0的否定为x≠0或y≠0.故“若x2+y2=0(x,y∈R),则x=y=0”的逆否命题为“若x≠0或y≠0(x,y∈R),则x2+y2≠0”.2.有以下命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中真命题为( )A.①② B.②③C.④ D.①②③解析:选D ①“若x,y互为倒数,则xy=1”是真命题;②“面积不相等的两个三角形一定不全等”,是真命题;③若m≤1,则Δ=4-4m≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A∩B=B,得B⊆A,所以原命题是假命题,故其逆否命题也是假命题.故选D.3.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2C.1 D.0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.[名师微点]1.由原命题写出其他3种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[提醒] (1)对于不是“若p,则q”形式的命题,需先改写;(2)当命题有大前提时,写其他三种命题时需保留大前提.2.判断命题真假的2种方法(1)直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命题,只需举出一个反例即可.(2)间接判断:根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其逆否命题的真假.考点二[师生共研过关] 充分条件、必要条件的判定 [典例精析](1)(2018·天津高考)设x∈R,则“<”是“x3<1”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件(2)(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件(3)“a=0”是“函数f(x)=sin x-+a为奇函数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件[解析] (1)由<,得0<x<1,则0<x3<1,即“<”⇒“x3<1”;由x3<1,得x<1,当x≤0时,≥,即“x3<1”⇒ / “<”.所以“<”是“x3<1”的充分而不必要条件.(2)a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.(3)f(x)的定义域为{x|x≠0},关于原点对称,当a=0时,f(x)=sin x-,f(-x)=sin(-x)-=-sin x+=-=-f(x),故f(x)为奇函数;反之,当f(x)=sin x-+a为奇函数时,f(-x)+f(x)=0,又f(-x)+f(x)=sin(-x)-+a+sin x-+a=2a,故a=0,所以“a=0”是“函数f(x)=sin x-+a为奇函数”的充要条件,故选C.[答案] (1)A (2)B (3)C[解题技法]充分、必要条件的判断3种方法利用定义判断直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件是什么、结论是什么从集合的角度判断利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题利用等价转化法条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假 [过关训练]1.(2018·衡阳模拟)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 若y=f(x)为奇函数,则y=|f(x)|的图象关于y轴对称,反过来不成立,因为当y=f(x)为偶函数时,y=|f(x)|的图象也关于y轴对称.故选B.2.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.又a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=,|3a+b|=,能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充分必要条件.3.设a,b是实数,则“a>b”是“a2>b2”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件. 考点三[师生共研过关] 充分条件、必要条件的探求与应用 [典例精析](1)命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件是( )A.a≥9 B.a≤9C.a≥10 D.a≤10(2)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,则m的取值范围为________.[解析] (1)命题“∀x∈[1,3],x2-a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.则a≥10是命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件.(2)由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的必要条件,则S⊆P,∴解得0≤m≤3,故0≤m≤3时,x∈P是x∈S的必要条件.[答案] (1)C (2)[0,3]1.(变条件)本例(2)中条件“若x∈P是x∈S的必要条件”变为“綈P是綈S的必要不充分条件”,其他条件不变.求实数m的取值范围.解:由例题知P={x|-2≤x≤10}.∵綈P是綈S的必要不充分条件,∴P是S的充分不必要条件,∴P⇒S且SP.∴[-2,10][1-m,1+m].∴或∴m≥9,则m的取值范围是[9,+∞).2.(变设问)本例(2)条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由.解:由例题知P={x|-2≤x≤10}.若x∈P是x∈S的充要条件,则P=S,∴∴这样的m不存在.[解题技法]根据充分、必要条件求解参数范围的方法及注意点(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[过关训练]1.使a>0,b>0成立的一个必要不充分条件是( )A.a+b>0 B.a-b>0C.ab>1 D.>1解析:选A 因为a>0,b>0⇒a+b>0,反之不成立,而由a>0,b>0不能推出a-b>0,ab>1,>1,故选A.2.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-1,+∞) D.(-∞,-3]解析:选A 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.故选A. 一、题点全面练1.命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A “若p,则q”的否命题是“若綈p,则綈q”,所以原命题的否命题是“若a≤b,则a+c≤b+c”,故选A.2.命题“若α=,则tan α=1”的逆否命题是( )A.若α≠,则tan α≠1 B.若α=,则tan α≠1C.若tan α≠1,则α≠ D.若tan α≠1,则α=解析:选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.3.有下列几个命题:①“若a>b,则>”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是( )A.① B.①②C.②③ D.①②③解析:选C ①原命题的否命题为“若a≤b,则≤”,假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③.4.设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选C 由A∩B=A可得A⊆B,由A⊆B可得A∩B=A.所以“A∩B=A”是“A⊆B”的充要条件.故选C.5.(2019·西城区模拟)设平面向量a,b,c均为非零向量,则“a·(b-c)=0”是“b=c”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 由b=c,得b-c=0,得a·(b-c)=0;反之不成立.故“a·(b-c)=0”是“b=c”的必要不充分条件.6.(2019·抚州七校联考)A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分解析:选C 根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C.7.(2019·湘东五校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )A.m> B.0<m<1C.m>0 D.m>1解析:选C 若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m>0.8.(2019·安阳模拟)设p:f(x)=ex+2x2+mx+1在[0,+∞)上单调递增,q:m+5≥0,则p是q的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 函数f(x)在[0,+∞)上单调递增,只需f′(x)=ex+4x+m≥0在[0,+∞)上恒成立,又因为f′(x)=ex+4x+m在[0,+∞)上单调递增,所以f′(0)=1+m≥0,即m≥-1,故p是q的充分不必要条件.二、专项培优练(一)易错专练——不丢怨枉分1.已知α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A ∵α,β是两个不同的平面,直线l⊂β,则“α∥β”⇒“l∥α”,反之不成立,∴α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的充分不必要条件.故选A.2.(2019·太原模拟)“m=2”是“函数y=|cos mx|(m∈R)的最小正周期为”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A ∵当函数y=|cos mx|(m∈R)的最小正周期为时,m=±2,∴“m=2”是“函数y=|cos mx|(m∈R)的最小正周期为”的充分不必要条件.3.“单调函数不是周期函数”的逆否命题是_______________________________.解析:原命题可改写为“若函数是单调函数,则函数不是周期函数”,故其逆否命题是“若函数是周期函数,则函数不是单调函数”,简化为“周期函数不是单调函数”.答案:周期函数不是单调函数(二)素养专练——学会更学通4.[逻辑推理]若命题A的逆命题为B,命题A的否命题为C,则B是C的( )A.逆命题 B.否命题C.逆否命题 D.都不对解析:选C 根据题意,设命题A为“若p,则q”,则命题B为“若q,则p”,命题C为“若綈p,则綈q”,显然,B与C是互为逆否命题.故选C.5.[逻辑推理]若a,b都是正整数,则a+b>ab成立的充要条件是( )A.a=b=1 B.a,b至少有一个为1C.a=b=2 D.a>1且b>1解析:选B ∵a+b>ab,∴(a-1)(b-1)<1.∵a,b∈N*,∴(a-1)(b-1)∈N,∴(a-1)(b-1)=0,∴a=1或b=1.故选B.6.[数学运算]圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是( )A.k≤-2或k≥2 B.k≤-2C.k≥2 D.k≤-2或k>2解析:选B 若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,∴k≥2或k≤-2,∴圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是k≤-2,故选B.7.[数学运算]方程x2-2x+a+1=0有一正一负两实根的充要条件是( )A.a<0 B.a<-1C.-1<a<0 D.a>-1解析:选B ∵方程x2-2x+a+1=0有一正一负两实根,∴解得a<-1.故选B.8.[数学抽象]能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.解析:设f(x)=sin x,则f(x)在上是增函数,在上是减函数.由正弦函数图象的对称性知,当x∈(0,2]时,f(x)>f(0)=sin 0=0,故f(x)=sin x满足条件f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不一直都是增函数.答案:f(x)=sin x(答案不唯一)