|教案下载
终身会员
搜索
    上传资料 赚现金
    2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例
    立即下载
    加入资料篮
    2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例01
    2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例02
    2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例

    展开

    第四节 变量间的相关关系、统计案例

    [最新考纲] 1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验的基本思想、方法及其初步应用.4.了解回归分析的基本思想、方法及简单应用.

    (对应学生用书第184)

    1相关性

    (1)线性相关

    若两个变量xy的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的.

    (2)非线性相关

    若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的.

    (3)不相关

    如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的.

    2最小二乘估计

    (1)最小二乘法

    如果有n个点(x1y1)(x2y2)(xnyn)可以用下面的表达式来刻画这些点与直线yabx的接近程度:[y1(abx1)]2[y2(abx2)]2[yn(abxn)]2.

    使得上式达到最小值的直线yabx就是我们所要求的直线,这种方法称为最小二乘法.

    (2)线性回归方程

    方程ybxa是两个具有线性相关关系的变量的一组数据(x1y1)(x2y2)(xnyn)的线性回归方程,其中ab是待定参数.

    3回归分析

    (1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.

    (2)样本点的中心

    对于一组具有线性相关关系的数据(x1y1)(x2y2)(xnyn)中,()称为样本点的中心.

    (3)相关系数r

    r

    r>0时,称两个变量正相关

    r<0时,称两个变量负相关

    r0时,称两个变量线性不相关

    4独立性检验

    若一个2×2列联表为:

    B 

    A    

    B1

    B2

    总计

    A1

    a

    b

    ab

    A2

    c

    d

    cd

    总计

    ac

    bd

    nabcd

    则统计量χ2为:

    χ2.

    (1)χ22.706时,可以认为变量AB没有关联的;

    (2)χ2>2.706时,有90%的把握判定变量AB有关联;

    (3)χ2>3.841时,有95%的把握判定变量AB有关联;

    (4)χ2>6.635时,有99%的把握判定变量AB有关联.

    1线性回归方程ybxa一定过样本点的中心()

    2由回归直线求出的数据是估算值,不是精确值.

    一、思考辨析(正确的打“√”,错误的打“×”)

    (1)名师出高徒可以解释为教师的教学水平与学生的水平成正相关关系.                            (  )

    (2)只有两个变量有相关关系,所得到的回归模型才有预测价值.(  )

    (3)回归直线方程x至少经过点(x1y1)(x2y2)(xnyn)中的一个点.               (  )

    (4)若事件XY关系越密切,则由观测数据计算得到的χ2的观测值越小.                  (  )

    [答案](1) (2) (3)× (4)×

    二、教材改编

    1.下面是2×2列联表:则表中ab的值分别为(  )

     

    y1

    y2

    合计

    x1

    a

    21

    73

    x2

    22

    25

    47

    合计

    b

    46

    120

    A.94,72      B52,50

    C52,74 D74,52

    C [a2173a52.a22bb74.]

    2.已知变量xy正相关,且由观测数据算得样本平均数33.5,则由该观测数据算得的线性回归方程可能是(  )

    A.0.4x2.3 B.2x2.4

    C.=-2x9.5 D.=-0.3x4.4

    A [因为变量xy正相关,排除选项CD.又样本中心(3,3.5) 在回归直线上,排除B,选项A满足.]

    3.已知xy的取值如下表,从散点图可以看出yx具有线性相关关系,且回归方程为0.95x,则________.

    x

    0

    1

    3

    4

    y

    2.2

    4.3

    4.8

    6.7

    2.6 [回归直线必过样本点的中心(),又24.5,代入回归方程,得2.6.]

    4.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下列联表:

     

    理科

    文科

    13

    10

    7

    20

    已知P(χ23.841)0.05P(χ25.024)0.025.根据表中数据,得到χ2的观测值为4.844.则认为选修文科与性别有关系出错的可能性为________

    5% [χ2的观测值k4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定是否选修文科与性别之间有关系成立,并且这种判断出错的可能性约为5%.]

    (对应学生用书第185)

    考点1 变量间的相关关系的判断

     判定两个变量正、负相关性的方法

    (1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.

    (2)相关系数:r>0时,正相关;r<0时,负相关.

    (3)线性回归方程中:>0时,正相关;<0时,负相关.

     1.观察下列各图形,

                

    其中两个变量xy具有相关关系的图是(  )

    A①②   B①④   C③④   D②③

    C [图形具有正线性相关关系,图形具有非线性相关关系,故选C.]

    2.已知变量xy满足关系y=-0.1x1,变量yz正相关.下列结论中正确的是(  )

    Axy正相关,xz负相关

    Bxy正相关,xz正相关

    Cxy负相关,xz负相关

    Dxy负相关,xz正相关

    C [因为y=-0.1x1的斜率小于0,故xy负相关.因为yz正相关,可设zy0,则zy=-0.1x,故xz负相关.]

    3.某统计部门对四组数据进行统计分析后,获得如图所示的散点图,关于相关系数的比较,其中正确的是(  )

    Ar4r20r1r3  Br2r40r1r3

    Cr2r40r3r1 Dr4r20r3r1

    C [根据散点图的特征,数据大致呈增长趋势的是正相关,数据呈递减趋势的是负相关;数据越集中在一条直线附近,说明相关性越强,

    由题中数据可知:(1)(3)为正相关,(2)(4)为负相关;

    r1>0r3>0r2<0r40;又(1)(2)中散点图更接近于一条直线,故r1>r3r2<r4,  因此,r2<r4<0<r3<r1,故选C.]

    (1)变量间的相关关系分线性相关关系和非线性相关关系,如T1.

    (2)对相关系数r来说,|r|越接近于1,散点图越接近于一条直线,如T3.

    考点2 线性回归分析

     线性回归分析问题的类型及解题方法

    (1)求回归方程

    利用公式,求出回归系数.

    利用回归直线过样本点的中心求系数.

    (2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.

    (3)利用回归直线判断正、负相关;决定正相关还是负相关的是系数.

    (4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.

     下图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.

    注:年份代码17分别对应年份20122018.

    (1)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

    (2)建立y关于t的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量.

    附注:

    参考数据:yi9.32tiyi40.170.552.646.

    回归方程t中斜率和截距的最小二乘估计公式分别为:

    [](1)由折线图中数据和附注中参考数据得

    因为yt的相关系数近似为0.99,说明yt的线性相关程度相当高,从而可以用线性回归模型拟合yt的关系.

    (2)1.331(1)

    所以y关于t的回归方程为

    0.930.10t.

    2020年对应的t9代入回归方程得

    0.930.10×91.83.

    所以预测2020年我国生活垃圾无害化处理量约为1.83亿吨.

     在计算时,应根据所给数据对公式进行合理变形,如

    [教师备选例题]

    下表是某学生在4月份开始进入冲刺复习至高考前的5次大型联考数学成绩()

    联考次数x(1x5xN*)

    1

    2

    3

    4

    5

    数学分数y(0y150)

    117

    127

    125

    134

    142

    (1)请画出上表数据的散点图:

     (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;  

    若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=×100%,分数取整数)

    附:回归直线的斜率和截距的最小二乘估计公式分别为

    [](1)散点图如图:

    (2)由题得,3129

    xiyi1 992x55,525×3245,55×3×1291 935

    所以5.71295.7×3111.9

    y关于x的线性回归方程为y5.7x111.9.

    由上述回归方程可得高考应该是第六次考试,故x6,则y5.7×6111.9146.1146()

    故净提高分为14611630(),所以该生的复习提高率为×100%20%.

     1.经过对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:

    记忆能力x

    4

    6

    8

    10

    识图能力y

    3

    5

    6

    8

    由表中数据,求得线性回归方程为x,若某中学生的记忆能力为14,则该中学生的识图能力为(  )

    A7 B9.5    

    C11.1     D12

    C [x的平均数(46810)7

    y的平均数(3568)5.5

    回归方程过点(),即(7,5.5)

    5.50.8×7,得=-0.1,则0.8x0.1

    则当x14时,y0.8×140.111.20.111.1

    即该中学生的识图能力为11.1,故选C.]

    2.二手车经销商小王对其所经营的A型号二手汽车的使用年数x与销售价格y(单位:万元/)进行整理,得到如下数据:

    使用年数x

    2

    3

    4

    5

    6

    7

    售价y

    20

    12

    8

    6.4

    4.4

    3

    zln y

    3.00

    2.48

    2.08

    1.86

    1.48

    1.10

    z关于x的折线图,如图所示:

    (1)由折线图可以看出,可以用线性回归模型拟合zx的关系,请用相关系数加以说明;

    (2)y关于x的回归方程,并预测某辆A型号二手车当使用年数为9年时售价约为多少.(小数点后保留两位有效数字)

    [](1)由题意,知×(234567)4.5×(32.482.081.861.481.10)2

    r=-0.99

    zx的相关系数大约为-0.99,说明zx的线性相关程度很高.

    (2)=-0.36

    20.36×4.53.62

    zx的线性回归方程是=-0.36x3.62

    zln yy关于x的回归方程是e0.36x3.62.

    x9,得e0.36×93.62e0.38

    ln 1.460.381.46

    即预测某辆A型号二手车当使用年数为9年时售价约为1.46万元.

    考点3 独立性检验

     独立性检验的一般步骤

    (1)根据样本数据制成2×2列联表;

    (2)根据公式χ2,计算χ2的观测值k的值;

    (3)查表比较χ2的观测值k与临界值的大小关系,作统计判断.

     (2019·全国卷)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

     

    满意

    不满意

    男顾客

    40

    10

    女顾客

    30

    20

    (1)分别估计男、女顾客对该商场服务满意的概率;

    (2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

    附:

    χ2

    P(χ2k)

    0.050

    0.010

    0.001

    k

    3.841

    6.635

    10.828

    [](1)由调查数据知,男顾客中对该商场服务满意的比率为0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.

    (2)χ2的观测值k4.762.

    由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.

     对于估计概率问题,一般是用频率代替概率.

    [教师备选例题]

    有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:

     

    冷漠

    不冷漠

    总计

    多看电视

    68

    42

    110

    少看电视

    20

    38

    58

    总计

    88

    80

    168

    附表:

    P(χ2k)

    0.050

    0.010

    k

    3.841

    6.635

    则在犯错误的概率不超过多少的前提下认为多看电视与人冷漠有关系(  )

    A0.01   B0.025

    C0.05 D0.10

    A [χ2的观测值k11.377,又11.3776.635在犯错误的概率不超过0.01的前提下认为多看电视与人变冷漠有关系,故选A.]

     (2017·全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:   

    (1)A表示事件旧养殖法的箱产量低于50 kg,估计A的概率;

    (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;

     

    箱产量<50 kg

    箱产量50 kg

    旧养殖法

     

     

    新养殖法

     

     

    (3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

    附:

    P(χ2k)

    0.050

    0.010

    0.001

    k

    3.841

    6.635

    10.828

    χ2.

    [](1)旧养殖法的箱产量低于50 kg的频率为

    (0.0120.0140.0240.0340.040)×50.62.

    因此,事件A的概率估计值为0.62.

    (2)根据箱产量的频率分布直方图得列联表

     

    箱产量<50 kg

    箱产量50 kg

    旧养殖法

    62

    38

    新养殖法

    34

    66

    χ2的观测值k15.705.

    由于15.7056.635,故有99%的把握认为箱产量与养殖方法有关.

    (3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)50 kg55 kg之间,旧养殖法的箱产量平均值(或中位数)45 kg50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021高三数学北师大版(文)一轮教师用书:第10章第4节 变量间的相关关系、统计案例
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map