所属成套资源:2021版新高考数学一轮复习教师用书(精品教案,)
2021版新高考数学一轮教师用书:第1章第4节 相等关系与不等关系
展开
第四节 相等关系与不等关系
[考点要求] 1.了解现实世界及日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.了解基本不等式的证明过程.3.会用基本不等式解决简单的最大(小)值问题.
(对应学生用书第8页)
1.两个实数比较大小的方法
(1)作差法
(2)作商法
2.等式的性质
(1)对称性:若a=b,则b=a.
(2)传递性:若a=b,b=c,则a=c.
(3)可加性:若a=b,则a+c=b+c.
(4)可乘性:若a=b,则ac=bc;若a=b,c=d,则ac=bd.
3.不等式的性质
(1)对称性:a>b⇔bb,b>c⇒a>c;
(3)可加性:a>b⇔a+c>b+c;
a>b,c>d⇒a+c>b+d;
(4)可乘性:a>b,c>0⇒ac>bc;
a>b,c0,c>d>0⇒ac>bd;
(5)乘方法则:a>b>0⇒an>bn(n≥2,n∈N);
(6)开方法则:a>b>0⇒>(n≥2,n∈N);
(7)倒数性质:设ab>0,则a.
4.基本不等式:≤
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.
5.两个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤(a,b∈R),当且仅当a=b时取等号.
6.利用基本不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
1.若a>b>0,m>0,则<;
若b>a>0,m>0,则>.
2.+≥2(a,b同号),当且仅当a=b时取等号.
3.ab≤≤.
4.≤≤≤(a>0,b>0).
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两个不等式a2+b2≥2ab与≥成立的条件是相同的.( )
(2)a>b⇔ac2>bc2.( )
(3)函数f(x)=sin x+,x∈(0,π)的最小值为4.( )
(4)x>0且y>0是+≥2的充要条件.( )
[答案] (1)× (2)× (3)× (4)×
二、教材改编
1.设A=(x-3)2,B=(x-2)(x-4),则A与B的大小关系为( )
A.A≥B B.A>B
C.A≤B D.A<B
B [∵A-B=(x-3)2-(x-2)(x-4)
=x2-6x+9-x2+6x-8=1>0,
∴A>B,故选B.]
2.若x2)的最小值为________.
4 [当x>2时,x-2>0,f(x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号.]
4.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m2.
25 [设矩形的一边为x m,矩形场地的面积为y,
则另一边为×(20-2x)=(10-x)m,
则y=x(10-x)≤=25,
当且仅当x=10-x,即x=5时,ymax=25.]
(对应学生用书第9页)
考点1 比较大小与不等式的性质
比较大小的5种常用方法
(1)作差法:直接作差判断正负即可(常用变形手段:因式分解、配方、有理化、通分等).
(2)作商法:直接作商与1的大小比较,注意两式的符号.
(3)函数的单调性法:把比较的两个数看成一个函数的两个值,根据函数的单调性比较.
(4)不等式的性质法.
(5)特殊值排除法:可以多次取特殊值,根据特殊值比较大小,从而得出结论.
1.若a,b,c∈R,且a>b,则下列不等式一定成立的是( )
A.a+c≥b-c B.(a-b)c2≥0
C.ac>bc D.≤
B [(不等式的性质法)a,b,c∈R,且a>b,可得a-b>0,因为c2≥0,所以(a-b)c2≥0.故选B.]
2.若a,∴4x-5>0.
y=4x+=4x-5++5≥2+5=7.
当且仅当4x-5=,即x=时上式“=”成立.
即x=时,ymin=7.]
[母题探究] [一题两空]把本例(3)中的条件“x>”,改为“x0,则+取最小值时,a的值为________.
-2 [∵a+b=2,b>0,
∴+=+=+
=++≥+2=+1,当且仅当=时等号成立.
又a+b=2,b>0,
∴当b=-2a,a=-2时,+取得最小值.]
(2019·深圳市福田区模拟)已知a>1,b>0,a+b=2,则+的最小值为( )
A.+ B.+
C.3+2 D.+
A [已知a>1,b>0,a+b=2,可得(a-1)+b=1,
又a-1>0,则+=[(a-1)+b]
=1+++≥+2=+.
当且仅当=,a+b=2时取等号.
则+的最小值为+.故选A.]
消元法求最值
对于含有多个变量的条件最值问题,若直接运用基本不等式无法求最值时,可尝试减少变量的个数,即根据题设条件建立两个变量之间的函数关系,然后代入代数式转化为只含有一个变量的函数的最值问题,即减元(三元化二元,二元化一元).
(2019·嘉兴期末)已知a>0,b>0,且2a+b=ab-1,则a+2b的最小值为( )
A.5+2 B.8
C.5 D.9
A [∵a>0,b>0,且2a+b=ab-1,
∴a=>0,∴b>2,
∴a+2b=+2b=2(b-2)++5
≥5+2=5+2.
当且仅当2(b-2)=,即b=2+时取等号.
∴a+2b的最小值为5+2.故选A.]
求解本题的关键是将等式“2a+b=ab-1”变形为“a=,然后借助配凑法求最值.
(2019·新余模拟)已知正实数a,b,c满足a2-2ab+9b2-c=0,则当取得最大值时,+-的最大值为( )
A.3 B.
C.1 D.0
C [由正实数a,b,c满足a2-2ab+9b2=c,得===≤,当且仅当=,即a=3b时,取最大值.
又因为a2-2ab+9b2-c=0,
所以此时c=12b2,
所以+-=≤=1,
故最大值为1.]
利用两次基本不等式求最值
当运用一次基本不等式无法求得代数式的最值时,常采用第二次基本不等式;需注意连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性.
已知a>b>0,那么a2+的最小值为________.
4 [由题意a>b>0,则a-b>0,
所以b(a-b)≤=,
所以a2+≥a2+≥2=4,
当且仅当b=a-b且a2=,即a=,b=时取等号,所以a2+的最小值为4.]
由于b+(a-b)为定值,故可求出b(a-b)的最大值,然后再由基本不等式求出题中所给代数式的最小值.
若a,b∈R,ab>0,则的最小值为________.
4 [因为ab>0,所以≥==4ab+≥2=4,当且仅当时取等号,
故的最小值是4.]
考点3 利用基本不等式解决实际问题
利用基本不等式解决实际问题的3个注意点
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
经测算,某型号汽车在匀速行驶过程中每小时耗油量y(L)与速度x(km/h)(50≤x≤120)的关系可近似表示为y=
(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?
(2)已知A,B两地相距120 km,假定该型号汽车匀速从A地驶向B地,则汽车速度为多少时总耗油量最少?
[解] (1)当x∈[50,80)时,y=(x2-130x+4 900)=[(x-65)2+675],
所以当x=65时,y取得最小值,最小值为×675=9.
当x∈[80,120]时,函数y=12-单调递减,
故当x=120时,y取得最小值,最小值为12-=10.
因为9