|教案下载
终身会员
搜索
    上传资料 赚现金
    2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题
    立即下载
    加入资料篮
    2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题01
    2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题02
    2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题03
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题

    展开

    第二节 利用导数解决函数的单调性问题

    [考点要求] 1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性会求函数的单调区间(其中多项式函数一般不会超过三次)

    (对应学生用书第47)

    函数的单调性与导数的关系

    条件

    结论

    函数yf(x)在区间(ab)上可导

    f(x)0

    f(x)(ab)单调递增

    f′(x)0

    f(x)(ab)单调递减

    f′(x)0

    f(x)(ab)内是常数函数

    1在某区间内f′(x)0(f′(x)0)是函数f(x)在此区间上为增()函数的充分不必要条件

    2可导函数f(x)(ab)上是增()函数的充要条件是x(ab)都有f′(x)0(f′(x)0)f′(x)(ab)上的任何子区间内都不恒为零

    一、思考辨析(正确的打“√”错误的打“×”)

    (1)若函数f(x)(ab)内单调递增那么一定有f′(x)0.(  )

    (2)如果函数f(x)在某个区间内恒有f′(x)0f(x)在此区间内没有单调性.(  )

    (3)(ab)f′(x)0f′(x)0的根有有限个f(x)(ab)内是减函数.(  )

    [答案] (1)× (2) (3)

    二、教材改编

    1如图是函数yf(x)的导函数yf′(x)的图象则下面判断正确的是(  )

    A.在区间(31)f(x)是增函数

    B在区间(13)f(x)是减函数

    C在区间(45)f(x)是增函数

    D在区间(35)f(x)是增函数

    C [由图象可知x(45)f(x)0f(x)(45)上是增函数.]

    2函数f(x)cos xx(0π)上的单调性是(  )

    A先增后减  B.先减后增

    C增函数     D减函数

    D [因为f′(x)=-sin x10(0π)上恒成立

    所以f(x)(0π)上是减函数故选D.]

    3函数f(x)xln x的单调递减区间为________

    (01] [函数f(x)的定义域为{x|x0}f′(x)100x1

    所以函数f(x)的单调递减区间为(01].]

    4已知f(x)x3ax[1)上是增函数则实数a的最大值是________

    3 [f′(x)3x2a0a3x2

    又因为x[1 )所以a3a的最大值是3.]

    (对应学生用书第48)

    考点1 不含参数函数的单调性

     求函数单调区间的步骤

    (1)确定函数f(x)的定义域.

    (2)f′(x).

    (3)在定义域内解不等式f′(x)0得单调递增区间.

    (4)在定义域内解不等式f′(x)0得单调递减区间.

     1.函数f(x)1xsin x(02π)上是(  )

    A单调递增

    B单调递减

    C(0π)上增2π)上减

    D(0π)上减2π)上增

    A [f′(x)1cos x0(02π)上恒成立所以在(02π)上单调递增.]

    2函数yx2ln x的单调递减区间为(  )

    A(11]  B(01]

    C[1)    D(0)

    B [yx2ln x

    x(0)yx.

    y0可解得0x1

    yx2ln x的单调递减区间为(01]故选B.]

    3已知定义在区间(ππ)上的函数f(x)x sin xcos xf(x)的单调递增区间是________

    (π)(0) [f′(x)sin xx cos xsin xx cos x

    f′(x)x cos x0

    则其在区间(ππ)上的解集为(π)(0)

    f(x)的单调递增区间为(π)(0).]

     求函数的单调区间时一定要树立函数的定义域优先的原则否则极易出错.如T2.

    考点2 含参数函数的单调性

     研究含参数函数的单调性时需注意依据参数取值对不等式解集的影响进行分类讨论.

    (1)讨论分以下四个方面

    二次项系数讨论根的有无讨论根的大小讨论

    根在不在定义域内讨论.

    (2)讨论时要根据上面四种情况找准参数讨论的分类.

    (3)讨论完必须写综述.

     已知函数f(x)x22a ln x(a2)xa0论函数f(x)的单调性.

    [] 函数的定义域为(0)f(x)xa2.

    当-a2a=-2f(x)0f(x)(0)上单调递增.

    0<-a2即-2a00x<-ax2f(x)0;-ax2f(x)0

    f(x)(0a)(2)上单调递增(a2)上单调递减.

    当-a2

    a<-2

    0x2x>-af(x)02x<-af(x)0

    f(x)(02)(a)上单调递增(2a)上单调递减.

    综上所述当-2a0f(x)(0a)(2)上单调递增(a2)上单调递减;当a=-2f(x)(0)上单调递增;当a<-2f(x)(02)(a)上单调递增(2a)上单调递减.

     含参数的问题应就参数范围讨论导数大于(或小于)零的不等式的解在划分函数的单调区间时要在函数定义域内确定导数为零的点和函数的间断点.

     已知函数f(x)ln (ex1)ax(a0)讨论函数yf(x)的单调区间.

    [] f′(x)a1a.

    a1f(x)0恒成立

    a[1)

    函数yf(x)R上单调递减.

    0a1

    f′(x)0(1a)(ex1)1

    ex>-1解得xln

    f′(x)0(1a)(ex1)1

    ex<-1解得xln .

    a(01)

    函数yf(x)(ln )上单调递增

    (ln )上单调递减.

    综上a[1)f(x)R上单调递减;

    a(01)f(x)(ln )上单调递增

    (ln )上单调递减.

    考点3 已知函数的单调性求参数

     根据函数单调性求参数的一般方法

    (1)利用集合间的包含关系处理:yf(x)(ab)上单调则区间(ab)是相应单调区间的子集.

    (2)f(x)为增函数的充要条件是对任意的x(ab)都有f′(x)0且在(ab)内的任一非空子区间上f′(x)不恒为零应注意此时式子中的等号不能省略否则漏解.

    (3)函数在某个区间存在单调区间可转化为不等式有解问题.

     已知函数f(x)ln xg(x)ax22x(a0).

    (1)若函数h(x)f(x)g(x)存在单调递减区间a的取值范围;

    (2)若函数h(x)f(x)g(x)[14]上单调递减a的取值范围.

    [] (1)h(x)ln xax22xx(0)

    所以h′(x)ax2由于h(x)(0)上存在单调递减区间

    所以当x(0)ax20有解

    a有解.

    G(x)所以只要aG(x)min即可.

    G(x)(1)21所以G(x)min=-1.

    所以a>-1a0a的取值范围是(10)(0).

    (2)h(x)[14]上单调递减得

    x[14]h(x)ax20恒成立

    a恒成立.

    所以aG(x)max

    G(x)(1)21

    因为x[14]

    所以[1]

    所以G(x)max=-(此时x4)

    所以aa0a的取值范围是[0)(0).

    [母题探究]

    1(变问法)若函数h(x)f(x)g(x)[14]上单调递增a的取值范围.

    [] h(x)[14]上单调递增得x[14]h(x)0恒成立

    所以当x[14]a恒成立

    又当x[14]()min=-1(此时x1)

    所以a1a0

    a的取值范围是(1].

    2(变问法)若函数h(x)f(x)g(x)[14]上存在单调递减区间a的取值范围.

    [] h(x)[14]上存在单调递减区间

    h′(x)0[14]上有解

    所以当x[14]a有解

    又当x[14]()min=-1

    所以a>-1a0a的取值范围是(10)(0).

    3(变条件)若函数h(x)f(x)g(x)[14]上不单调a的取值范围.

    [] 因为h(x)[14]上不单调

    所以h′(x)0(14)上有解

    a有解m(x)x(14)

    则-1m(x)<-

    所以实数a的取值范围为(1).

     (1)f(x)D上单调递增()只要满足f′(x)0(0)D上恒成立即可.如果能够分离参数则可分离参数后转化为参数值与函数最值之间的关系.

    (2)二次函数在区间D上大于零恒成立讨论的标准是二次函数的图象的对称轴与区间D的相对位置一般分对称轴在区间左侧、内部、右侧进行讨论.

     已知函数f(x)2x2ln x在区间[12]上为单调函数a的取值范围.

    [] f′(x)4x若函数f(x)在区间[12]上为单调函数即在[12]f(x)4x0f(x)4x0

    4x04x0[12]上恒成立

    4x4x.

    h(x)4x因为函数h(x)[12]上单调递增

    所以h(2)h(1)3

    解得a00aa1.

    考点4 利用导数比较大小或解不等式

     用导数比较大小或解不等式常常要构造新函数把比较大小或求解不等式的问题转化为利用导数研究函数单调性的问题再由单调性比较大小或解不等式.

    常见构造的辅助函数形式有:

    (1)f(x)g(x)F(x)f(x)g(x)

    (2)xf′(x)f(x)[xf(x)]′

    (3)xf′(x)f(x)[]′

    (4)f′(x)f(x)[exf(x)]′

    (5)f′(x)f(x)[]′.

     (1)已知函数f(x)是定义在R上的偶函数设函数f(x)的导函数为f′(x)若对任意x0都有2f(x)xf′(x)0成立(  )

    A4f(2)9f(3)    B4f(2)9f(3)

    C2f(3)3f(2)    D3f(3)2f(2)

    (2)f(x)是定义在R上的奇函数f(2)0x00恒成立则不等式x2f(x)0的解集是________

    (1)A (2)(2)(02) [(1)根据题意g(x)x2f(x)其导数g′(x)2xf(x)x2f(x)又对任意x02f(x)xf′(x)0成立则当x0g(x)x(2f(x)xf′(x))0恒成立即函数g(x)(0)上为增函数又由函数f(x)是定义在R上的偶函数f(x)f(x)则有g(x)(x)2f(x)x2f(x)g(x)即函数g(x)也为偶函数则有g(2)g(2)g(2)g(3)则有g(2)g(3)即有4f(2)9f(3).故选A.

    (2)φ(x)

    x0[]′0

    φ(x)(0)上为减函数φ(2)0

    (0)当且仅当0x2φ(x)0

    此时x2f(x)0.

    f(x)为奇函数h(x)x2f(x)也为奇函数.

    x2f(x)0的解集为(2)(02).]

     如本例(1)已知条件2f(x)xf′(x)0需构造函数g(x)x2f(x)求导后得x0g(x)0即函数g(x)(0)上为增函数从而问题得以解决.而本例(2)则需构造函数φ(x)解决.

     1.定义在R上的函数f(x)满足:f′(x)f(x)恒成立x1x2ex1f(x2)ex2f(x1)的大小关系为(  )

    Aex1f(x2)ex2f(x1)

    Bex1f(x2)ex2f(x1)

    Cex1f(x2)ex2f(x1)

    Dex1f(x2)ex2f(x1)的大小关系不确定

    A [g(x)g′(x)由题意得g′(x)0所以g(x)R上单调递增x1x2g(x1)g(x2)所以ex1f(x2)ex2f(x1).]

    2已知函数f(x)(xR)满足f(1)1f(x)的导函数f(x)则不等式f(x2)的解集为________

    (1)(1) [由题意构造函数F(x)f(x)xF′(x)f′(x).因为f′(x)所以F(x)f′(x)0即函数F(x)R上单调递减.

    因为f(x2)f(1)1所以f(x2)f(1)所以F(x2)F(1)又函数F(x)R上单调递减所以x21

    x(1)(1).]

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版新高考数学一轮教师用书:第3章第2节 利用导数解决函数的单调性问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map