2021版高考文科数学(人教A版)一轮复习教师用书:第二章 第2讲 第1课时 函数的单调性与最值
展开第2讲 函数的基本性质
第1课时 函数的单调性与最值
一、知识梳理
1.函数的单调性
(1)单调函数的定义
| 增函数 | 减函数 |
定义 | 一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2 | |
当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数 | 当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数 | |
图象描述 | 自左向右看图象是上升的 | 自左向右看图象是下降的 |
(2)单调区间的定义
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.
[注意] 有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.
2.函数的最值
前提 | 设函数y=f(x)的定义域为I,如果存在实数M满足 | ||
条件 | (1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得 f(x0)=M | (1)对于任意x∈I,都有f(x)≥M; (2)存在x0∈I,使得 f(x0)=M | |
结论 | M为最大值 | M为最小值 | |
常用结论
1.函数单调性的两个等价结论
设∀x1,x2∈D(x1≠x2),则
(1)>0(或(x1-x2)[f(x1)-f(x2)]>0)⇔f(x)在D上单调递增.
(2)<0(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上单调递减.
2.函数最值存在的两条结论
(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.
(2)开区间上的“单峰”函数一定存在最大(小)值.
二、习题改编
1.(必修1P39A组T1改编)函数y=x2-5x-6在区间[2,4]上是( )
A.递减函数 B.递增函数
C.先递减再递增函数 D.先递增再递减函数
解析:选C.作出函数y=x2-5x-6的图象(图略)知开口向上,且对称轴为x=,在[2,4]上先减后增.故选C.
2.(必修1P31例4改编)函数y=在[2,3]上的最小值为( )
A.2 B.
C. D.-
解析:选B.因为y=在[2,3]上单调递减,所以ymin==.故选B.
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)若定义在R上的函数f(x),有f(-1)<f(3),则函数f(x)在R上为增函数.( )
(2)函数y=f(x)在[1,+∞)上是增函数,则函数f(x)的单调递增区间是[1,+∞).( )
(3)函数y=的单调递减区间是(-∞,0)∪(0,+∞).( )
(4)所有的单调函数都有最值.( )
(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )
(6)闭区间上的单调函数,其最值一定在区间端点取到.( )
答案:(1)× (2)× (3)× (4)× (5)× (6)√
二、易错纠偏
(1)求单调区间忘记定义域导致出错;
(2)混淆“单调区间”与“在区间上单调”两个概念出错;
(3)自变量的系数影响函数的单调性.
1.已知函数f(x)=,则该函数的单调递增区间为( )
A.(-∞,1] B.[3,+∞)
C.(-∞,-1] D.[1,+∞)
解析:选B.设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).
2.若函数f(x)=x2-2mx+1在[2,+∞)上是增函数,则实数m的取值范围是 .
解析:由题意知,[2,+∞)⊆[m,+∞),所以m≤2.
答案:(-∞,2]
3.函数y=(2m-1)x+b在R上是减函数,则m的取值范围为 .
解析:要使y=(2m-1)x+b在R上是减函数,则2m-1<0,即m<.
答案:
确定函数的单调性(区间)(多维探究)
角度一 判断或证明函数的单调性
(一题多解)试讨论函数f(x)=(a≠0)在(-1,1)上的单调性.
【解】 法一:设-1<x1<x2<1,
f(x)=a=a,
f(x1)-f(x2)=a-a=,由于-1<x1<x2<1,
所以x2-x1>0,x1-1<0,x2-1<0,
故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上单调递减;
当a<0时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)在(-1,1)上单调递增.
法二:f′(x)=
==-.
当a>0时,f′(x)<0,函数f(x)在(-1,1)上单调递减;
当a<0时,f′(x)>0,函数f(x)在(-1,1)上单调递增.
利用定义法证明或判断函数单调性的步骤
[注意] 判断函数的单调性还有图象法、导数法、性质法等.
角度二 求函数的单调区间
求函数f(x)=-x2+2|x|+1的单调区间.
【解】 f(x)=
=
画出函数图象如图所示,可知单调递增区间为(-∞,-1]和(0,1],单调递减区间为(-1,0]和(1,+∞).
【迁移探究】 (变条件)若本例函数变为f(x)=|-x2+2x+1|,如何求解?
解:函数y=|-x2+2x+1|的图象如图所示.由图象可知,函数y=|-x2+2x+1|的单调递增区间为(1-,1]和(1+,+∞);单调递减区间为(-∞,1- ]和(1,1+ ].
确定函数的单调区间的方法
[注意] (1)函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y=在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.
(2)“函数的单调区间是M”与“函数在区间N上单调”是两个不同的概念,显然N⊆M.
1.函数y=|x|(1-x)在区间A上是增函数,那么区间A可能是( )
A.(-∞,0) B.
C.[0,+∞) D.
解析:选B.y=|x|(1-x)=
=
=
画出函数的草图,如图.
由图易知原函数在上单调递增.
2.下列函数中,满足“∀x1,x2∈(0,+∞)且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”的是( )
A.f(x)=2x B.f(x)=|x-1|
C.f(x)=-x D.f(x)=ln(x+1)
解析:选C.由(x1-x2)·[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)上是减函数,A、D选项中,f(x)为增函数;B中,f(x)=|x-1|在(0,+∞)上不单调,对于f(x)=-x,因为y=与y=-x在(0,+∞)上单调递减,因此f(x)在(0,+∞)上是减函数.
3.判断函数y=的单调性.
解:因为f(x)==2x-,且函数的定义域为(-∞,0)∪(0,+∞),而函数y=2x和y=-在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f(x)=2x-在区间(-∞,0)上为增函数.
同理,可得f(x)=2x-在区间(0,+∞)上也是增函数.
故函数f(x)=在区间(-∞,0)和(0,+∞)上均为增函数.
函数的最值(值域)(师生共研)
(1)(一题多解)函数y=x+的最小值为 .
(2)(2020·福建漳州质检)已知函数f(x)=有最小值,则实数a的取值范围是 .
【解析】 (1)法一(换元法):令t=,且t≥0,则x=t2+1,
所以原函数变为y=t2+1+t,t≥0.
配方得y=+,
又因为t≥0,所以y≥+=1,
故函数y=x+的最小值为1.
法二:因为函数y=x和y=在定义域内均为增函数,故函数y=x+在[1,+∞)内为增函数,所以ymin=1.
(2)(基本不等式法)由题意知,当x>0时,函数f(x)=x+≥2=4,当且仅当x=2时取等号;当x≤0时,f(x)=2x+a∈(a,1+a],因此要使f(x)有最小值,则必须有a≥4.
【答案】 (1)1 (2)[4,+∞)
求函数最值的五种常用方法
1.函数f(x)=的最大值为 .
解析:当x≥1时,函数f(x)=为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.
答案:2
2.函数f(x)=在区间[a,b]上的最大值是1,最小值是,则a+b= .
解析:易知f(x)在[a,b]上为减函数,
所以即所以
所以a+b=6.
答案:6
函数单调性的应用(多维探究)
角度一 比较两个函数值
已知函数f(x)的图象关于直线x=1对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f,b=f(2),c=f(e),则a,b,c的大小关系为( )
A.c>a>b B.c>b>a
C.a>c>b D.b>a>c
【解析】 因为f(x)的图象关于直线x=1对称.由此可得f=f.当x2>x1>1时,
[f(x2)-f(x1)](x2-x1)<0恒成立,
知f(x)在(1,+∞)上单调递减.
因为1<2<<e,
所以f(2)>f>f(e),
所以b>a>c.
【答案】 D
比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.
角度二 解函数不等式
已知函数f(x)=-x|x|,x∈(-1,1),则不等式f(1-m)<f(m2-1)的解集为 .
【解析】 由已知得f(x)=则f(x)在(-1,1)上单调递减,所以解得0<m<1,
所以所求解集为(0,1).
【答案】 (0,1)
在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.
角度三 求参数的值或取值范围
已知函数f(x)=满足对任意的实数x1≠x2,都有<0成立,则实数a的取值范围为 .
【解析】 由题意知,函数f(x)是R上的减函数,于是有解得a≤,即实数a的取值范围是.
【答案】
利用单调性求参数的策略
(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;
(2)若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.
1.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x-1)<f的x的取值范围是( )
A. B.
C. D.
解析:选D.因为函数f(x)是定义在区间[0,+∞)上的增函数,满足f(2x-1)<f.所以0≤2x-1<,解得≤x<.故选D.
2.函数y=f(x)在[0,2]上单调递增,且函数f(x)的图象关于直线x=2对称,则下列结论成立的是( )
A.f(1)<f<f B.f<f(1)<f
C.f<f<f(1) D.f<f<f(1)
解析:选B.因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),所以f=f,f=f.又0<<1<<2,
f(x)在[0,2]上单调递增,所以f<f(1)<f,即f<f(1)<f.
3.若函数f(x)=|2x+a|的单调增区间是[3,+∞),则a的值为 .
解析:由图象(图略)易知函数f(x)=|2x+a|的单调增区间是,令-=3,得a=-6.
答案:-6
核心素养系列3 逻辑推理——函数单调性问题中的核心素养
以函数的单调性为出发点,以增函数、减函数的定义为依据,通过数学运算、比较、分类讨论、综合分析,提高逻辑推理的能力,迅速解题.
已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1;②当x>0时,f(x)>-1.
(1)求f(0)的值,并证明f(x)在R上是单调增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.
【解】 (1)令x=y=0得f(0)=-1.令f(x)在R上任取x1>x2,
则x1-x2>0,f(x1-x2)>-1.
又f(x1)=f((x1-x2)+x2)=f(x1-x2)+f(x2)+1>f(x2),
所以,函数f(x)在R上是单调增函数.
(2)由f(1)=1,得f(2)=3,f(3)=5.
由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),
又函数f(x)在R上是增函数,故x2+x+1>3,
解得x<-2或x>1,
故原不等式的解集为{x|x<-2或x>1}.
抽象函数问题中需注意以下三点:
(1)注意函数的定义域,树立定义域优先的观念.
(2)注意函数性质的综合应用,如函数的奇偶性、周期性等.
(3)利用“抽象函数具体化”,列举出符合条件的具体函数或画出其图象来分析求解.
若f(x)是定义在(0,+∞)上的单调增函数,且满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,则x的取值范围是( )
A.(8,+∞) B.(8,9]
C.[8,9] D.(0,8)
解析:选B.2=1+1=f(3)+f(3)=f(9),
由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),
因为f(x)是定义在(0,+∞)上的单调增函数,
所以有解得8<x≤9.
[基础题组练]
1.(2019·高考北京卷)下列函数中,在区间(0,+∞)上单调递增的是( )
A.y=x B. y=2-x
C.y=logx D.y=
解析:选A.对于幂函数y=xα,当α>0时,y=xα在(0,+∞)上单调递增,当α<0时,y=xα在(0,+∞)上单调递减,所以选项A正确;选项D中的函数y=可转化为y=x-1,所以函数y=在(0,+∞)上单调递减,故选项D不符合题意;对于指数函数y=ax(a>0,且a≠1),当0<a<1时,y=ax在(-∞,+∞)上单调递减,当a>1时,y=ax在(-∞,+∞)上单调递增,而选项B中的函数y=2-x可转化为y=,因此函数y=2-x在(0,+∞)上单调递减,故选项B不符合题意;对于对数函数y=logax(a>0,且a≠1),当0<a<1时,y=logax在(0,+∞)上单调递减,当a>1时,y=logax在(0,+∞)上单调递增,因此选项C中的函数y=logx在(0,+∞)上单调递减,故选项C不符合题意,故选A.
2.函数f(x)=-x+在上的最大值是( )
A. B.-
C.-2 D.2
解析:选A.函数f(x)=-x+的导数为f′(x)=-1-,则f′(x)<0,可得f(x)在上单调递减,即f(-2)为最大值,且为2-=.
3.已知函数f(x)为R上的减函数,则满足f<f(1)的实数x的取值范围是( )
A.(-1,1) B.(0,1)
C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞)
解析:选C.由f(x)为R上的减函数且f<f(1),得即所以-1<x<0或0<x<1.故选C.
4.若函数f(x)=x2+a|x|+2,x∈R在区间[3,+∞)和[-2,-1]上均为增函数,则实数a的取值范围是( )
A. B.[-6,-4]
C.[-3,-2] D.[-4,-3]
解析:选B.由于f(x)为R上的偶函数,因此只需考虑函数f(x)在(0,+∞)上的单调性即可.由题意知函数f(x)在[3,+∞)上为增函数,在[1,2]上为减函数,故-∈[2,3],即a∈[-6,-4].
5.定义新运算“⊕”:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )
A.-1 B.1
C.6 D.12
解析:选C.由已知得,当-2≤x≤1时,f(x)=x-2;
当1<x≤2时,f(x)=x3-2.
因为f(x)=x-2,f(x)=x3-2在定义域内都为增函数,
所以f(x)的最大值为f(2)=23-2=6.
6.函数f(x)=|x-2|x的单调减区间是 .
解析:由于f(x)=|x-2|x=结合图象可知函数的单调减区间是[1,2].
答案:[1,2]
7.若函数f(x)=在区间[2,a]上的最大值与最小值的和为,则a= .
解析:由f(x)=的图象知,f(x)=在(0,+∞)上是减函数,因为[2,a]⊆(0,+∞),
所以f(x)=在[2,a]上也是减函数,
所以f(x)max=f(2)=,f(x)min=f(a)=,
所以+=,所以a=4.
答案:4
8.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集为 .
解析:由函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,知不等式-3<f(x+1)<1,即为f(0)<f(x+1)<f(3),所以0<x+1<3,所以-1<x<2.
答案:(-1,2)
9.已知函数f(x)=2x-的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求当函数f(x)取得最值时x的值.
解:(1)当a=1时,f(x)=2x-,
任取0<x2<x1≤1,
则f(x1)-f(x2)=2(x1-x2)-
=(x1-x2).
因为0<x2<x1≤1,所以x1-x2>0,x1x2>0.
所以f(x1)>f(x2),
所以f(x)在(0,1]上单调递增,当x=1时取得最大值1.
所以f(x)的值域为(-∞,1].
(2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;
当a<0时,f(x)=2x+,
当 ≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a;
当 <1,即a∈(-2,0)时,y=f(x)在上单调递减,在上单调递增,无最大值,当x=时取得最小值2.
10.已知函数f(x)=-(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)在上的值域是,求a的值.
解:(1)证明:任取x1>x2>0,
则f(x1)-f(x2)=--+
=,因为x1>x2>0,
所以x1-x2>0,x1x2>0,
所以f(x1)-f(x2)>0,
即f(x1)>f(x2),
所以f(x)在(0,+∞)上是增函数.
(2)由(1)可知,f(x)在上为增函数,
所以f=-2=,
f(2)=-=2,
解得a=.
[综合题组练]
1.已知函数f(x)=对任意的x1≠x2都有(x1-x2)[f(x2)-f(x1)]>0成立,则实数a的取值范围是( )
A.(-∞,3] B.(-∞,3)
C.(3,+∞) D.[1,3)
解析:选D.由(x1-x2)[f(x2)-f(x1)]>0,得(x1-x2)·[f(x1)-f(x2)]<0,所以函数f(x)在R上单调递减,所以
解得1≤a<3.故选D.
2.(创新型)对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是 .
解析:依题意,h(x)=
当0<x≤2时,h(x)=log2x是增函数,
当x>2时,h(x)=3-x是减函数,
所以h(x)在x=2时,取得最大值,h(2)=1.
答案:1
3.已知f(x)=(x≠a).
(1)若a=-2,试证明f(x)在(-∞,-2)上单调递增;
(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.
解:(1)证明:设x1<x2<-2,
则f(x1)-f(x2)=-=.
因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)<f(x2),
所以f(x)在(-∞,-2)上单调递增.
(2)设1<x1<x2,则f(x1)-f(x2)=-
=.
因为a>0,x2-x1>0,
所以要使f(x1)-f(x2)>0,
只需(x1-a)(x2-a)>0恒成立,
所以a≤1.
综上所述,a的取值范围为(0,1].
4.已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)证明:f(x)为单调递减函数;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)证明:任取x1,x2∈,且x1>x2,则>1,由于当x>1时,f(x)<0,所以f<0,即f(x1)-f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间上是单调递减函数.
(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[2,9]上的最小值为f(9),由f=f(x1)-f(x2)得f=f(9)-f(3),而f(3)=-1,所以f(9)=-2.所以f(x)在[2,9]上的最小值为-2.