所属成套资源:2021版高考文科数学人教A版一轮复习精品教案()
2021版高考文科数学(人教A版)一轮复习教师用书:第二章 第1讲 函数及其表示
展开第1讲 函数及其表示一、知识梳理1.函数与映射的概念 函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意] 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.二、习题改编1.(必修1P23练习T2改编)下列四个图形中,不是以x为自变量的函数的图象是( )答案:C2.(必修1P18例2改编)下列哪个函数与y=x相等( )A.y= B.y=2log2xC.y= D.y=()3答案:D一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)对于函数f:A→B,其值域是集合B.( )(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(4)函数f(x)的图象与直线x=1最多有一个交点.( )(5)分段函数是由两个或几个函数组成的.( )答案:(1)× (2)√ (3)× (4)√ (5)×二、易错纠偏(1)对函数概念理解不透彻;(2)解分段函数不等式忽视范围.1.下列函数中,与函数y=x+1是相等函数的是( )A.y=()2 B.y=3+1C.y=+1 D.y=+1解析:选B.对于A.函数y=()2的定义域为{x|x≥-1},与函数y=x+1的定义域不同,不是相等函数;对于B.定义域和对应关系都相同,是相等函数;对于C.函数y=+1的定义域为{x|x≠0},与函数y=x+1的定义域不同,不是相等函数;对于D,定义域相同,但对应关系不同,不是相等函数.2.设函数f(x)=则使得f(x)≥1的自变量x的取值范围为 .解析:当x<1时,|x|≥1,所以x≥1或x≤-1.所以x≤-1;当x≥1时,3x-5≥1,所以x≥2.所以x≥2;所以x的取值范围为(-∞,-1]∪[2,+∞).答案:(-∞,-1]∪[2,+∞) 函数的定义域(多维探究)角度一 求函数的定义域 (2020·辽宁鞍山一中一模)函数f(x)=+ln(2x+1)的定义域为( )A. B.C. D.【解析】 要使函数f(x)有意义,需满足解得-<x<2.所以函数f(x)的定义域为.故选D.【答案】 D求函数定义域的两种方法方法解读适合题型直接法构造使解析式有意义的不等式(组)求解已知函数的具体表达式,求f(x)的定义域转移法若y=f(x)的定义域为(a,b),则解不等式a<g(x)<b即可求出y=f(g(x))的定义域已知f(x)的定义域,求f(g(x))的定义域若y=f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域已知f(g(x))的定义域,求f(x)的定义域[提醒] 定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.角度二 已知函数的定义域求参数 若函数f(x)=的定义域为一切实数,则实数m的取值范围是 .【解析】 由题意可得mx2+mx+1≥0对x∈R恒成立.当m=0时,1≥0恒成立;当m≠0时,则解得0<m≤4.综上可得0≤m≤4.【答案】 [0,4]已知函数定义域求参数取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f(x)=+ln(2x-x2)的定义域为( )A.(2,+∞) B.(1,2)C.(0,2) D.[1,2]解析:选B.要使函数有意义,则解得1<x<2.所以函数f(x)=+ln(2x-x2)的定义域为(1,2).2.如果函数f(x)=ln(-2x+a)的定义域为(-∞,1),那么实数a的值为( )A.-2 B.-1C.1 D.2解析:选D.因为-2x+a>0,所以x<,所以=1,所以a=2.3.(2020·山东安丘质量检测)已知函数f(x)的定义域为[0,2],则函数g(x)=f+的定义域为( )A.[0,3] B.[0,2]C.[1,2] D.[1,3]解析:选A.由题意,可知x满足解得0≤x≤3,即函数g(x)的定义域为[0,3],故选A. 函数的解析式(师生共研) (1)已知f=lg x,则f(x)的解析式为 .(2)若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为 .(3)已知函数f(x)满足f(-x)+2f(x)=2x,则f(x)的解析式为 .【解析】 (1)(换元法)令+1=t,由于x>0,所以t>1且x=,所以f(t)=lg,即f(x)的解析式是f(x)=lg(x>1).(2)(待定系数法)设f(x)=ax2+bx+c(a≠0),又f(0)=c=3.所以f(x)=ax2+bx+3,所以f(x+2)-f(x)=a(x+2)2+b(x+2)+3-(ax2+bx+3)=4ax+4a+2b=4x+2.所以所以所以所求函数的解析式为f(x)=x2-x+3.(3)(解方程组法)因为2f(x)+f(-x)=2x,①将x换成-x得2f(-x)+f(x)=-2x,②由①②消去f(-x),得3f(x)=6x,所以f(x)=2x.【答案】 (1)f(x)=lg(x>1) (2)f(x)=x2-x+3 (3)f(x)=2x求函数解析式的4种方法1.(一题多解)已知二次函数f(2x+1)=4x2-6x+5,则f(x)= .解析:法一(换元法):令2x+1=t(t∈R),则x=,所以f(t)=4-6·+5=t2-5t+9(t∈R),所以f(x)=x2-5x+9(x∈R).法二(配凑法):因为f(2x+1)=4x2-6x+5=(2x+1)2-10x+4=(2x+1)2-5(2x+1)+9,所以f(x)=x2-5x+9(x∈R).法三(待定系数法):因为f(x)是二次函数,所以设f(x)=ax2+bx+c(a≠0),则f(2x+1)=a(2x+1)2+b(2x+1)+c=4ax2+(4a+2b)x+a+b+c.因为f(2x+1)=4x2-6x+5,所以解得所以f(x)=x2-5x+9(x∈R).答案:x2-5x+9(x∈R)2.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)= .解析:因为-1≤x≤0,所以0≤x+1≤1,所以f(x)=f(x+1)=(x+1)[1-(x+1)]=-x(x+1).故当-1≤x≤0时,f(x)=-x(x+1).答案:-x(x+1) 分段函数(多维探究)角度一 求分段函数的函数值 (1)(2020·合肥一检)已知函数f(x)=则f(f(1))=( )A.- B.2C.4 D.11(2)(2020·山西太原三中模拟)设函数f(x)=若f(m)=3,则f= .【解析】 (1)因为f(1)=12+2=3,所以f(f(1))=f(3)=3+=4.故选C.(2)当m≥2时,m2-1=3,所以m=2或m=-2(舍);当0<m<2时,log2m=3,所以m=8(舍).所以m=2.所以f=f=log2=-1.【答案】 (1)C (2)-1分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验. 角度二 分段函数与方程、不等式问题 (1)(一题多解)设f(x)=若f(a)=f(a+1),则f=( )A.2 B.4C.6 D.8(2)(一题多解)(2018·高考全国卷Ⅰ)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是( )A.(-∞,-1] B.(0,+∞)C.(-1,0) D.(-∞,0)【解析】 (1)法一:当0<a<1时,a+1>1,所以f(a)=,f(a+1)=2(a+1-1)=2a.由f(a)=f(a+1)得=2a,所以a=.此时f=f(4)=2×(4-1)=6.当a≥1时,a+1>1,所以f(a)=2(a-1),f(a+1)=2(a+1-1)=2a.由f(a)=f(a+1)得2(a-1)=2a,无解.综上,f=6,故选C.法二:因为当0<x<1时,f(x)=,为增函数,当x≥1时,f(x)=2(x-1),为增函数,又f(a)=f(a+1),所以=2(a+1-1),所以a=.所以f=f(4)=6.(2)法一:①当即x≤-1时,f(x+1)<f(2x)即为2-(x+1)<2-2x,即-(x+1)<-2x,解得x<1.因此不等式的解集为(-∞,-1].②当时,不等式组无解.③当即-1<x≤0时,f(x+1)<f(2x)即1<2-2x,解得x<0.因此不等式的解集为(-1,0).④当即x>0时,f(x+1)=1,f(2x)=1,不合题意.综上,不等式f(x+1)<f(2x)的解集为(-∞,0).故选D.法二:因为f(x)=所以函数f(x)的图象如图所示.由图可知,当x+1≤0且2x≤0时,函数f(x)为减函数,故f(x+1)<f(2x)转化为x+1>2x.此时x≤-1.当2x<0且x+1>0时,f(2x)>1,f(x+1)=1,满足f(x+1)<f(2x).此时-1<x<0.综上,不等式f(x+1)<f(2x)的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D.【答案】 (1)C (2)D有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.1.已知f(x)=则f+f的值等于( )A.-2 B.4C.2 D.-4解析:选B.由题意得f=2×=.f=f=f=2×=.所以f+f=4.2.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围为( )A.(1,+∞) B.(2,+∞)C.(-∞,-1)∪(1,+∞) D.(-∞,-2)∪(2,+∞)解析:选D.当a>0时,不等式a[f(a)-f(-a)]>0可化为a2+a-3a>0,解得a>2.当a<0时.不等式a[f(a)-f(-a)]>0可化为-a2-2a<0,解得a<-2.综上所述,a的取值范围为(-∞,-2)∪(2,+∞).3.(2020·安徽安庆二模)已知函数f(x)=若实数a满足f(a)=f(a-1),则f= .解析:由题意得a>0.当0<a<1时,由f(a)=f(a-1),即2a=.解得a=,则f=f(4)=8,当a≥1时,由f(a)=f(a-1),得2a=2(a-1),无解.答案:8核心素养系列2 数学抽象——函数的新定义问题所谓“新定义”函数,是相对于高中教材而言,指在高中教材中不曾出现或尚未介绍的一类函数.函数新定义问题的一般形式是:由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题. (2020·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f(x)的图象恰好经过n(n∈N*)个整点,则称函数f(x)为n阶整点函数.给出下列函数:①f(x)=sin 2x;②g(x)=x3;③h(x)=;④φ(x)=ln x.其中是一阶整点函数的是( )A.①②③④ B.①③④C.①④ D.④【解析】 对于函数f(x)=sin 2x,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D;对于函数g(x)=x3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A;对于函数h(x)=,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个 B.2个C.3个 D.4个解析:选C.由x2+1=1得x=0,由x2+1=3得x=±,所以函数的定义域可以是{0,},{0,-},{0,,-},故值域为{1,3}的同族函数共有3个.2.若函数f(x)同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x1,x2∈R,且x1≠x2,都有<0.①f(x)=sin x;②f(x)=-2x3;③f(x)=1-x;以上三个函数中, 是“优美函数”.解析:由条件(1),得f(x)是R上的奇函数,由条件(2),得f(x)是R上的单调递减函数.对于①,f(x)=sin x在R上不单调,故不是“优美函数”;对于②,f(x)=-2x3既是奇函数,又在R上单调递减,故是“优美函数”;对于③,f(x)=1-x不是奇函数,故不是“优美函数”.答案:②[基础题组练]1.函数y=的定义域为( )A.(1,+∞) B.[1,+∞)C.(1,2)∪(2,+∞) D.(1,2)∪[3,+∞)解析:选C.由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=的定义域是(1,2)∪(2,+∞).2.已知f=2x-5,且f(a)=6,则a等于( )A.- B.C. D.-解析:选B.令t=x-1,则x=2t+2,所以f(t)=2(2t+2)-5=4t-1,所以f(a)=4a-1=6,即a=.3.(2020·江西南昌一模)设函数f(x)=则f(5)的值为( )A.-7 B.-1C.0 D.解析:选D.f(5)=f(5-3)=f(2)=f(2-3)=f(-1)=(-1)2-2-1=.故选D.4.已知f=+,则f(x)等于( )A.(x+1)2(x≠1) B.(x-1)2(x≠1)C.x2-x+1(x≠1) D.x2+x+1(x≠1)解析:选C.f=+=-+1,令=t(t≠1),则f(t)=t2-t+1,即f(x)=x2-x+1(x≠1).5.设函数f(x)=则f(f(2))= ,函数f(x)的值域是 .解析:因为f(2)=,所以f(f(2))=f=--2=-.当x>1时,f(x)∈(0,1),当x≤1时,f(x)∈[-3,+∞),所以f(x)∈[-3,+∞).答案:- [-3,+∞)6.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为 .解析:由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-x,所以f(x)=答案:f(x)=7.已知f(x)=则使f(x)≥-1成立的x的取值范围是 .解析:由题意知或解得-4≤x≤0或0<x≤2,故x的取值范围是[-4,2].答案:[-4,2]8.设函数f(x)=且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式;(2)画出f(x)的图象.解:(1)由f(-2)=3,f(-1)=f(1)得解得a=-1,b=1,所以f(x)=(2)f(x)的图象如图所示.[综合题组练]1.(2020·海淀期末)下列四个函数:①y=3-x;②y=2x-1(x>0);③y=x2+2x-10;④y=其中定义域与值域相同的函数的个数为( )A.1 B.2C.3 D.4解析:选B.①y=3-x的定义域与值域均为R,②y=2x-1(x>0)的定义域为(0,+∞),值域为,③y=x2+2x-10的定义域为R,值域为[-11,+∞),④y=的定义域和值域均为R.所以定义域与值域相同的函数是①④,共有2个,故选B.2.(创新型)设f(x),g(x)都是定义在实数集上的函数,定义函数(f·g)(x):∀x∈R,(f·g)(x)=f(g(x)).若f(x)=g(x)=则( )A.(f·f)(x)=f(x) B.(f·g)(x)=f(x)C.(g·f)(x)=g(x) D.(g·g)(x)=g(x)解析:选A.对于A,(f·f)(x)=f(f(x))=当x>0时,f(x)=x>0,(f·f)(x)=f(x)=x;当x<0时,f(x)=x2>0,(f·f)(x)=f(x)=x2;当x=0时,(f·f)(x)=f 2(x)=0=02,因此对任意的x∈R,有(f·f)(x)=f(x),故A正确,选A.3.(2020·宁夏银川一中一模)已知函数f(x)=则f(x+1)-9≤0的解集为 .解析:因为f(x)=所以当x+1≤0时,解得-4≤x≤-1;当x+1>0时,解得x>-1.综上,x≥-4,即f(x+1)-9≤0的解集为[-4,+∞).答案:[-4,+∞)4.(创新型)设函数f(x)的定义域为D,若对任意的x∈D,都存在y∈D,使得f(y)=-f(x)成立,则称函数f(x)为“美丽函数”,下列所给出的几个函数:①f(x)=x2;②f(x)=;③f(x)=ln(2x+3);④f(x)=2sin x-1.其中是“美丽函数”的序号有 .解析:由已知,在函数定义域内,对任意的x都存在着y,使x所对应的函数值f(x)与y所对应的函数值f(y)互为相反数,即f(y)=-f(x).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③