所属成套资源:2021版高考理科数学(北师大版)一轮复习教案
2021版高考理科数学(北师大版)一轮复习教师用书:第二章 第2讲 函数的单调性与最值
展开
第2讲 函数的单调性与最值
一、知识梳理
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A
当x1a
C.a>c>b D.b>a>c
【解析】 因为f(x)的图象关于直线x=1对称.
所以f=f.当x2>x1>1时,
[f(x2)-f(x1)]·(x2-x1)c.
【答案】 D
角度二 解函数不等式
已知函数f(x)=若f(2-x2)>f(x),则实数x的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-∞,-2)∪(1,+∞)
C.(-1,2) D.(-2,1)
【解析】 因为当x=0时,两个表达式对应的函数值都为零,所以函数f(x)的图象是一条连续的曲线.
因为当x≤0时,函数f(x)=x3为增函数,
当x>0时,f(x)=ln(x+1)也是增函数,
所以函数f(x)是定义在R上的增函数.
因此,不等式f(2-x2)>f(x)等价于2-x2>x,
即x2+x-20,解得m>0.综上可得,m的取值范围是(0,1].
2.已知函数f(x)=log2x+,若x1∈(1,2),x2∈(2,+∞),则( )
A.f(x1)0
解析:选B.因为函数f(x)=log2x+在(1,+∞)上为增函数,且f(2)=0,所以当x1∈(1,2)时,f(x1)f(2)=0,
即f(x1)0.故选B.
3.设f(x)=若f(0)是f(x)的最小值,则a的取值范围为________.
解析:因为当x≤0时,f(x)=(x-a)2,f(0)是f(x)的最小值,所以a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时取“=”.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,
所以a的取值范围是0≤a≤2.
答案:[0,2]
4.如果函数y=f(x)在区间I上是增函数,且函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”.若函数f(x)=x2-x+是区间I上的“缓增函数”,则“缓增区间”I为________.
解析:因为函数f(x)=x2-x+的对称轴为x=1,所以函数y=f(x)在区间[1,+∞)上是增函数,又当x≥1时,=x-1+,令g(x)=x-1+(x≥1),则g′(x)=-=,
由g′(x)≤0得1≤x≤,即函数=x-1+在区间[1, ]上递减,故“缓增区间”I为[1, ].
答案:[1, ]
5.已知函数f(x)=x2+a|x-2|-4.
(1)当a=2时,求f(x)在[0,3]上的最大值和最小值;
(2)若f(x)在区间[-1,+∞)上是增加的,求实数a的取值范围.
解:(1)当a=2时,f(x)=x2+2|x-2|-4==,
当x∈[0,2)时,-1≤f(x)0时,f(x)>-1.
(1)求f(0)的值,并证明f(x)在R上是增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.
解:(1)令x=y=0,得f(0)=-1.
在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.
又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是增函数.
(2)由f(1)=1,得f(2)=3,f(3)=5.
由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),
又函数f(x)在R上是增函数,故x2+x+1>3,
解得x1,
故原不等式的解集为{x|x1}.