终身会员
搜索
    上传资料 赚现金

    2021届高三新高考数学人教A版一轮复习教学案:第四章第6节第二课时 解三角形的综合应用

    立即下载
    加入资料篮
    2021届高三新高考数学人教A版一轮复习教学案:第四章第6节第二课时 解三角形的综合应用第1页
    2021届高三新高考数学人教A版一轮复习教学案:第四章第6节第二课时 解三角形的综合应用第2页
    2021届高三新高考数学人教A版一轮复习教学案:第四章第6节第二课时 解三角形的综合应用第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届高三新高考数学人教A版一轮复习教学案:第四章第6节第二课时 解三角形的综合应用

    展开

    
    第二课时 解三角形的综合应用

    考点一 解三角形的实际应用 多维探究
    角度1 测量距离问题
    【例1-1】 如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为________ m.

    解析 由已知,得∠QAB=∠PAB-∠PAQ=30°,
    又∠PBA=∠PBQ=60°,
    ∴∠AQB=30°,∴AB=BQ.
    又PB为公共边,∴△PAB≌△PQB,
    ∴PQ=PA.
    在Rt△PAB中,AP=AB·tan 60°=900,故PQ=900,
    ∴P,Q两点间的距离为900 m.
    答案 900
    规律方法 距离问题的类型及解法:
    (1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.
    (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.
    角度2 测量高度问题
    【例1-2】 如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于(  )

    A.5 B.15 C.5 D.15
    解析 在△BCD中,∠CBD=180°-15°-30°=135°.
    由正弦定理得=,
    所以BC=15.
    在Rt△ABC中,
    AB=BCtan ∠ACB=15×=15.
    答案 D
    规律方法 1.在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.
    2.准确理解题意,分清已知条件与所求,画出示意图.
    3.运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.
    角度3 测量角度问题
    【例1-3】 已知岛A南偏西38°方向,距岛A3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/时的速度向岛屿北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?


    解 如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x,AC=5,依题意,
    ∠BAC=180°-38°-22°=120°,

    由余弦定理可得BC2=AB2+AC2-2AB·ACcos 120°,
    所以BC2=49,所以BC=0.5x=7,解得x=14.
    又由正弦定理得sin∠ABC===,所以∠ABC=38°,
    又∠BAD=38°,所以BC∥AD,
    故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.
    规律方法 1.测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.
    2.方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.
    【训练1】 (1)(角度1)江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.
    (2)(角度2)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.

    (3)(角度3)如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于(  )

    A.30° B.45° C.60° D.75°
    解析 (1)如图,设炮台的顶部为A,底部为O,两只小船分别为M,N,则由题意得,OM=AOtan 45°=30(m),

    ON=AOtan 30°=×30=10(m),
    在△MON中,由余弦定理得,
    MN=
    ==10(m).
    (2)由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.
    又AB=600 m,故由正弦定理得=,
    解得BC=300(m).
    在Rt△BCD中,CD=BC·tan 30°=300×=100(m).
    (3)依题意可得AD=20 m,AC=30 m,
    又CD=50 m,
    所以在△ACD中,由余弦定理得
    cos∠CAD==
    ==,
    又0°

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map