![2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词第1页](http://www.enxinlong.com/img-preview/3/3/5719451/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词第2页](http://www.enxinlong.com/img-preview/3/3/5719451/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词第3页](http://www.enxinlong.com/img-preview/3/3/5719451/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021届高三新高考数学人教A版一轮复习教学案()
2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词
展开
第3节 简单的逻辑联结词、全称量词与存在量词
考试要求 1.了解逻辑联结词“或”、“且”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.
知 识 梳 理
1.简单的逻辑联结词
(1)命题中的且、或、非叫做逻辑联结词.
(2)命题p∧q,p∨q,綈p的真假判断
p
q
p∧q
p∨q
綈p
真
真
真
真
假
真
假
假
真
假
假
真
假
真
真
假
假
假
假
真
2.全称量词与存在量词
(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.
(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.
3.全称命题和特称命题
名称
全称命题
特称命题
结构
对M中的任意一个x,有p(x)成立
存在M中的一个x0,使p(x0)成立
简记
∀x∈M,p(x)
∃x0∈M,p(x0)
否定
∃x0∈M,綈p(x0)
∀x∈M,綈p(x)
[常用结论与微点提醒]
1.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与綈p→真假相反.
2.含有一个量词的命题的否定规律是“改量词,否结论”.
3.“p∨q”的否定是“(綈p)∧(綈q)”,“p∧q”的否定是“(綈p)∨(綈q)”.
4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.
诊 断 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)命题“5>6或5>2”是假命题.( )
(2)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.( )
(3)“长方形的对角线相等”是特称命题.( )
(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.( )
解析 (1)错误.命题p∨q中,p,q有一真则真.
(2)错误.p∧q是真命题,则p,q都是真命题.
(3)错误.命题“长方形的对角线相等”是全称命题.
答案 (1)× (2)× (3)× (4)√
2.(老教材选修2-1P18A1(3)改编)已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为( )
A.1 B.2 C.3 D.4
解析 p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.
答案 B
3.(新教材必修第一册P29习题1.5T3(3)改编)命题“表面积相等的三棱锥体积也相等”的否定是________________________.
答案 有些表面积相等的三棱锥体积不相等
4.(2020·成都诊断)已知命题p:∃x0∈R,x+4x0+60
C.∀x∈R,x2+4x+6>0 D.∃x∈R,x2+4x+6≥0
解析 依据特称命题的否定是全称命题,由此知答案A是正确的.
答案 A
5.(2020·唐山模拟)已知命题p:f(x)=x3-ax的图象关于原点对称;命题q:g(x)=xcos x的图象关于y轴对称.则下列命题为真命题的是( )
A.綈p B.q
C.p∧q D.p∧(綈q)
解析 根据题意,对于f(x)=x3-ax,有f(-x)=(-x)3-a(-x)=-(x3-ax)=-f(x),为奇函数,其图象关于原点对称,p为真命题;对于g(x)=xcos x,有g(-x)=(-x)cos(-x)=-xcos x,为奇函数,其图象关于原点对称,q为假命题,则綈p为假命题,q为假命题,p∧q为假命题,p∧(綈q)为真命题.
答案 D
6.(2019·豫南五校联考)若“∀x∈,m≤tan x+2”为真命题,则实数m的最大值为________.
解析 由x∈,∴1≤tan x+2≤2+.
∵“∀x∈,m≤tan x+2”为真命题,则m≤1.
∴实数m的最大值为1.
答案 1
考点一 含有逻辑联结词的命题的真假判断
【例1】 (1)设a,b,c是非零向量.已知命题p: 若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )
A.p∨q B.p∧q
C.(綈p)∧(綈q) D.p∧(綈q)
(2)(2020·济南调研)已知命题p:若a>|b|,则a2>b2;命题q:m,n是直线,α为平面,若m∥α,n⊂α,则m∥n.下列命题为真命题的是( )
A.p∧q B.p∧(綈q)
C.(綈p)∧q D.(綈p)∧(綈q)
解析 (1)取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.
又a,b,c是非零向量,
由a∥b知a=xb(x∈R),由b∥c知b=yc(y∈R),
∴a=xyc,∴a∥c,∴q是真命题.
综上知p∨q是真命题,p∧q是假命题.
綈p为真命题,綈q为假命题.
∴(綈p)∧(綈q),p∧(綈q)都是假命题.
(2)对于命题p,由a>|b|两边平方,可得到a2>b2,故命题p为真命题.对于命题q,直线m∥α,但是m,n有可能是异面直线,故命题q为假命题,綈q为真命题.所以p∧(綈q)为真命题.
答案 (1)A (2)B
规律方法 1.“p∨q”、“p∧q”、“綈p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p∨q”“p∧q”“綈p”形式命题的真假.
2.p∧q形式是“一假必假,全真才真”,p∨q形式是“一真必真,全假才假”,綈p则是“与p的真假相反”.
【训练1】 (1)若命题“p∨q”与命题“綈p”都是真命题,则( )
A.命题p与命题q都是真命题
B.命题p与命题q都是假命题
C.命题p是真命题,命题q是假命题
D.命题p是假命题,命题q是真命题
(2)(2020·衡水中学检测)命题p:若向量a·b2”.
(2)令f(x)=ex-x-1,则f′(x)=ex-1,当x>0时,
f′(x)>0,所以f(x)在(0,+∞)上单调递增,
∴f(x)>f(0)=0,即ex>x+1,命题p真;
令g(x)=ln x-x,x>0,则g′(x)=-1=,
当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)1,x-1≤0 D.∃x0≤1,x-1≤0
解析 命题p:“∀x>1,x2-1>0”,则綈p为:∃x0>1,x-1≤0.
答案 C
2.第32届夏季奥林匹克运动会将于2020年7月24日在日本东京隆重开幕.在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)∨(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定,选A.
答案 A
3.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )
A.∀n∈N*,f(n)∉N*且f(n)>n
B.∀n∈N*,f(n)∉N*或f(n)>n
C.∃n0∈N*,f(n0)∉N*且f(n0)>n0
D.∃n0∈N*,f(n0)∉N*或f(n0)>n0
解析 ∵全称命题的否定为特称命题,
∴该命题的否定是:∃n0∈N*,f(n0)∉N*或f(n0)>n0.
答案 D
4.已知命题p:∃x∈R,x2-x+1≥0;命题q:若a22,b>2”的充分不必要条件,则下列命题为真命题的是( )
A.p∧q B.(綈p)∧q
C.p∧(綈q) D.(綈p)∧(綈q)
解析 当x=2时,2x=x2,所以p是假命题;由a>2,b>2可以推出ab>4;反之不成立,例如a=2,b=4,所以“ab>4”是“a>2,b>2”的必要不充分条件,故q是假命题;所以(綈p)∧(綈q)是真命题.
答案 D
6.已知命题“∃x∈R,4x2+(a-2)x+≤0”是假命题,则实数a的取值范围为( )
A.(-∞,0) B.[0,4]
C.[4,+∞) D.(0,4)
解析 因为命题“∃x∈R,4x2+(a-2)x+≤0”是假命题,所以其否定命题“∀x∈R,4x2+(a-2)x+>0”是真命题.
则Δ=(a-2)2-4×4×=a2-4a0恒成立,p1是真命题.
又x2+x+1=+>0,∴p2是假命题.
由sin=1>2-π,知p3是假命题.
取x=-时,cos>cos=,
但x2+x+1=0恒成立.若p∧q为假命题,则实数m的取值范围为________.
解析 由命题p:∃x0∈R,(m+1)(x+1)≤0可得m≤-1;由命题q:∀x∈R,x2+mx+1>0恒成立,即Δ=m2-4
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)