初中数学湘教版七年级上册第1章 有理数1.3 有理数大小的比较教学设计
展开1.掌握有理数大小比较的法则;(重点)
2.掌握用数轴比较有理数的大小;(重点)
3.会比较有理数的大小,并能正确地使用“>”或“<”连接;(重点)
4.会初步进行有理数大小比较的推理.(难点)
一、情境导入
某一天我国5个城市的最低气温如图所示:
(1)从刚才的图片中你获得了哪些信息?
(2)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”);
广州______上海;北京______上海;北京______哈尔滨;武汉______哈尔滨;武汉______广州.
二、合作探究
探究点一:运用法则比较有理数的大小
【类型一】 直接比较大小
比较下列各对数的大小:
(1)3和-5;
(2)-3和-5;
(3)-2.5和-|-2.25|;
(4)-eq \f(3,5)和-eq \f(3,4).
解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小.
解:(1)因为正数大于负数,所以3>-5;
(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5;
(3)因为|-2.5|=2.5,eq \b\lc\|\rc\|(\a\vs4\al\c1(-|-2.25|))=2.25,2.5>2.25,所以-2.5<-|-2.25|;
(4)因为eq \b\lc\|\rc\|(\a\vs4\al\c1(-\f(3,5)))=eq \f(3,5),|-eq \f(3,4)|=eq \f(3,4),eq \f(3,5)<eq \f(3,4),所以-eq \f(3,4)<-eq \f(3,5).
方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.
【类型二】 有理数的最值问题
设a是绝对值最小的数,b是最大的负整数,c是最小的正整数,则a、b、c三数分别为( )
A.0,-1,1 B.1,0,-1
C.1,-1,0 D.0,1,-1
解析:因为a是绝对值最小的数,所以a=0,因为b是最大的负整数,所以b=-1,因为c是最小的正整数,所以c=1,综上所述,a、b、c分别为0、-1、1.故选A.
方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.
探究点二:借助数轴比较有理数的大小
【类型一】 借助数轴直接比较数的大小
画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,eq \f(1,2),-1eq \f(1,2),4,0.
解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.
解:如图所示:
因为在数轴上右边的数大于左边的数,所以-3.5<-1eq \f(1,2)<0<eq \f(1,2)<4<+5.
方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.
【类型二】 借助数轴间接比较数的大小
已知有理数a、b在数轴上的位置如图所示.比较a、b、-a、-b的大小,正确的是( )
A.a<b<-a<-b B.b<-a<-b<a
C.-a<a<b<-b D.-b<a<-a<b
解析:由图可得a<0<b,且|a|<|b|,则有-b<a<-a<b.故选D.
方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小.
三、板书设计
1.借助数轴比较有理数的大小:
在数轴上右边的数总比左边的数大
2.运用法则比较有理数的大小:
正数与0的大小比较
负数与0的大小比较
正数与负数的大小比较
负数与负数的大小比较
本节课的教学目标是让学生掌握比较有理数大小的两种方法,教学设计主要是从基础出发,从简单到复杂,层层递进,让学生更加深刻地认识和掌握有理数大小比较的方法.通过本节的教学,大部分学生能够理解法则的内容,但真正掌握有理数的大小比较的方法还需要一定量的练习进行巩固.同时在教学中还要充分发挥学生的主体意识,让学生逐步解决所设计的问题,并能举一反三.
湘教版七年级上册1.3 有理数大小的比较优秀教学设计: 这是一份湘教版七年级上册1.3 有理数大小的比较优秀教学设计,共5页。教案主要包含了教学目标,重点难点,教学过程等内容,欢迎下载使用。
2021学年第1章 有理数1.3 有理数大小的比较教案设计: 这是一份2021学年第1章 有理数1.3 有理数大小的比较教案设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
湘教版七年级上册1.3 有理数大小的比较教案及反思: 这是一份湘教版七年级上册1.3 有理数大小的比较教案及反思,共4页。教案主要包含了教学目标,教学重点,教学难点等内容,欢迎下载使用。