高中数学人教A版 (2019)必修 第一册4.4 对数函数第3课时学案及答案
展开第3课时 不同函数增长的差异
澳大利亚兔子数“爆炸”:1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子的数量在不到100年内达到75亿只,喂养牛羊的牧草几乎被兔子们吃光,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.兔子为什么会如此快地从几只增长到75亿只呢?原来在理想的环境中,种群数量呈指数增长;在有限制的环境中,种群数量的增长为对数增长.
问题:指数函数、对数函数底数大于1时增长快慢有什么规律?
提示:都是增函数,而y=ax(a>1)增长速度越来越快;y=lgax(a>1)在(0,+∞)上增长速度非常缓慢.
三种函数模型的性质
1.思考辨析(正确的画“√”,错误的画“×”)
(1)函数y=2x比y=2x增长的速度更快些.( )
(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有lgax
(3)函数y=lgeq \s\d5(eq \f(1,2))x衰减的速度越来越慢.( )
[答案] (1)× (2)× (3)√
2.已知变量y=1+2x,当x减少1个单位时,y的变化情况是( )
A.y减少1个单位B.y增加1个单位
C.y减少2个单位 D.y增加2个单位
C [结合函数y=1+2x的变化特征可知C正确.]
3.三个变量y1,y2,y3随变量x变化的数据如下表:
其中关于x呈指数增长的变量是________.
y2 [由指数函数的变化规律可知,y2随x的变化呈指数增长.]
4.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.
其中说法正确的序号是________.
②③ [结合图象可知②③正确,故填②③.]
【例1】 (1)下列函数中,增长速度最快的是( )
A.y=2 020x B.y=2020
C.y=lg2 020x D.y=2 020x
(2)下面对函数f(x)=lgeq \s\d5(eq \f(1,2))x,g(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x)与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快
(1)A (2)C [(1)指数函数y=ax,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.
(2)观察函数f(x)=lgeq \s\d5(eq \f(1,2))x,g(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x)与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:
函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]
常见的函数模型及增长特点
1线性函数模型,线性函数模型y=kx+bk>0的增长特点是直线上升,其增长速度不变.
2指数函数模型,指数函数模型y=axa>1的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.
3对数函数模型,对数函数模型y=lgaxa>1的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.
eq \([跟进训练])
1.下列函数中随x的增大而增大且速度最快的是( )
A.y=ex B.y=ln x
C.y=2x D.y=e-x
A [结合指数函数、对数函数及一次函数的图象变化趋势可知A正确.]
【例2】 函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出图中曲线C1,C2分别对应的函数;
(2)结合函数图象,判断feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))与geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),f(2 020)与g(2 020)的大小.
[解] (1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.
(2)∵f(1)=g(1),f(2)=g(2)
从图象上可以看出,当1<x<2时,f(x)<g(x),
∴feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))<geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)));
当x>2时,f(x)>g(x),
∴f(2 020)>g(2 020).
由图象判断指数函数、一次函数的方法,根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.
eq \([跟进训练])
2.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).
[解] (1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.
(2)当x
1.正确区分3种函数模型
(1)三种函数模型:线性函数增长模型、指数型函数增长模型、对数型函数增长模型.
(2)直线上升、指数爆炸、对数增长
对于直线y=kx+b(k>0)、指数函数y=ax(a>1)、对数函数y=lgbx(b>1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.
2.规避1个误区
实际问题应有定义域并作答.
1.下列函数中,随x的增大,增长速度最快的是( )
A.y=1 B.y=x
C.y=3x D.y=lg3x
C [结合函数y=1,y=x,y=3x及y=lg3x的图象可知(图略),随着x的增大,增长速度最快的是y=3x.]
2.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )
A.一次函数模型 B.二次函数模型
C.指数函数模型 D.对数函数模型
A [随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.]
3.某学校开展研究性学习活动,一组同学得到下面的试验数据:
现有如下4个模拟函数:
①y=0.58x-0.16;②y=2x-3.02;
③y=x2-5.5x+8;④y=lg2x.
请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选________.
④ [画出散点图,由图分析增长速度的变化,可知符合对数函数模型,故选④.
]
4.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=lg2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.
乙、甲、丙 [将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]
5.画出函数f(x)=eq \r(x)与函数g(x)=eq \f(1,4)x2-2的图象,并比较两者在[0,+∞)上的大小关系.
[解] 函数f(x)与g(x)的图象如图所示.
根据图象易得:当0≤x<4时,f(x)>g(x);
当x=4时,f(x)=g(x);
当x>4时,f(x)
学 习 目 标
核 心 素 养
1.理解直线上升、指数爆炸、对数增长的含义.(重点)
2.区分指数函数、对数函数以及一次函数增长速度的差异.(易混点)
3.会选择适当的函数模型分析和解决一些实际问题.(难点)
借助三个函数模型的增长特征培养数学运算、数学建模的素养.
y=ax(a>1)
y=lgax(a>1)
y=kx(k>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化趋势
随x增大逐渐近似与y轴平行
随x增大逐渐近似与x轴平行
保持固定增长速度
增长速度
①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=lgax(a>1)的增长速度越来越慢;
②存在一个x0,当x>x0时,有ax>kx>lgax
x
0
5
10
15
20
25
30
y1
5
130
505
1 130
2 005
3 130
4 505
y2
5
90
1 620
29 160
524 880
9 447 840
170 061 120
y3
5
30
55
80
105
130
155
几类函数模型的增长差异
指数函数、对数函数与一次函数模型的比较
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
x
1.99
3
4
5.1
8
y
0.99
1.58
2.01
2.35
3.00
高中数学人教A版 (2019)必修 第一册4.4 对数函数学案及答案: 这是一份高中数学人教A版 (2019)必修 第一册4.4 对数函数学案及答案,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共8页, 欢迎下载使用。
人教A版 (2019)必修 第一册4.4 对数函数导学案: 这是一份人教A版 (2019)必修 第一册4.4 对数函数导学案,共13页。
2020-2021学年4.3 对数导学案: 这是一份2020-2021学年4.3 对数导学案,共8页。