- 4.6 利用相似三角形测高 PPT课件 课件 25 次下载
- 4.7 第1课时 相似三角形中的对应线段之比 PPT课件 课件 24 次下载
- 4.8 第1课时 位似多边形及其性质 PPT课件 课件 22 次下载
- 4.8 第2课时 平面直角坐标系中的位似变换 PPT课件 课件 23 次下载
- 北师大版数学九上 第四章 小结与复习 PPT课件 课件 30 次下载
初中数学北师大版九年级上册7 相似三角形的性质示范课ppt课件
展开1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.(重点)2.掌握相似三角形的周长比、面积比在实际中的应用.(难点)
问题:我们知道,如果两个三角形相似,它们对应高的比、对应中线的比和对应角平分线的比都等于相似比.那么它们周长的比之间有什么关系?也等于相似比吗?面积之比呢?
问题:图中(1)(2)(3)分别是边长为1,2,3的等边三角形,它们都相似吗?
(1)与(2)的相似比=______,(1)与(2)的周长比=______,(1)与(3)的相似比=______,(1)与(3)的周长比=______.
结论: 相似三角形的周长比等于______.
证明:设△ABC∽△A1B1C1,相似比为k,
求证:相似三角形的周长比等于相似比.
想一想:怎么证明这一结论呢?
(1)与(2)的相似比=______,(1)与(2)的面积比=______(1)与(3)的相似比=______,(1)与(3)的面积比=______
问题:图中(1)(2)(3)分别是边长为1,2,3的等边三角形,回答以下问题:
结论: 相似三角形的面积比等于__________.
证明:设△ABC∽△A′B′C′,相似比为k,
如图,分别作出△ABC和△A′B′C′的高AD和A′D′.
∵△ABC和△A′B′C′都是直角三角形,并且∠B=∠B′,
∴△ABD∽△A′B′D′.
∵△ABC∽△A′B′C′.
1.已知ΔABC与ΔA′B′C′的相似比为2:3,则对 应边上中线之比 ,面积之比为 . 2. 如果两个相似三角形的面积之比为1:9, 周长的比为______ .
例1:将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分的面积是△ABC的面积的一半.已知BC=2,求△ABC平移的距离.
解:根据题意,可知EG∥AB.
∴∠GEC=∠B,∠EGC=∠A.
∴△GEC∽△ABC
即,△ABC平移的距离为
解:在 △ABC 和 △DEF 中,∵ AB=2DE,AC=2DF,
∴ △DEF ∽ △ABC ,相似比为 1 : 2.
如果两个相似三角形的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为______.
∴ △ADE ∽△ABC.
∵ 它们的相似比为 3 : 5,∴ 面积比为 9 : 25.
又∵ △ABC 的面积为 100 cm2,
∴ △ADE 的面积为 36 cm2 .
∴ 四边形 BCDE 的面积为100-36 = 64 (cm2).
如图,△ABC 中,点 D、E、F 分别在 AB、AC、BC 上,且 DE∥BC,EF∥AB. 当 D 点为 AB 中点时,求 S四边形BFED : S△ABC 的值.
解:∵ DE∥BC,D 为 AB 中点, ∴ △ADE ∽ △ABC , 相似比为 1 : 2, 面积比为 1 : 4.
又∵ EF∥AB,∴ △EFC ∽ △ABC ,相似比为 1 : 2,面积比为 1 : 4.设 S△ABC = 4,则 S△ADE = 1,S△EFC = 1,S四边形BFED = S△ABC-S△ADE-S△EFC = 4-1-1 = 2,∴ S四边形BFED : S△ABC = 2 : 4 =
1. 判断: (1) 一个三角形的各边长扩大为原来的 5 倍,这个 三角形的周长也扩大为原来的 5 倍 ( ) (2) 一个四边形的各边长扩大为原来的 9 倍,这个 四边形的面积也扩大为原来的 9 倍 ( )
3. 连接三角形两边中点的线段把三角形截成的一个 小三角形与原三角形的周长比等于______,面积 比等于_____.
2. 在 △ABC 和 △DEF 中,AB=2 DE,AC=2 DF, ∠A=∠D,AP,DQ 是中线,若 AP=2,则 DQ 的值为 ( ) A.2 B.4 C.1 D.
4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm, 若较大三角形的周长是 42 cm,面积是 12 cm2,则 较小三角形的周长____cm,面积为____cm2.
5. 如图,这是圆桌正上方的灯泡 (点A) 发出的光线照 射桌面形成阴影的示意图,已知桌面的直径为 1.2 米,桌面距离地面为 1 米,若灯泡距离地面 3 米, 则地面上阴影部分的面积约为多少 (结果保留两位 小数)?
解:∵ FH = 1 米,AH = 3 米, 桌面的直径为 1.2 米, ∴ AF = AH-FH = 2 (米), DF = 1.2÷2 = 0.6 (米). ∵DF∥CH, ∴△ADF ∽△ACH,
解得 CH = 0.9米.∴ 阴影部分的面积为:
答:地面上阴影部分的面积为 2.54 平方米.
6. △ABC 中,DE∥BC,EF∥AB,已知 △ADE 和 △EFC 的面积分别为 4 和 9,求 △ABC 的面积.
解:∵ DE∥BC,EF∥AB,∴ △ADE ∽△ABC,∠ADE =∠EFC,∠A =∠CEF,∴△ADE ∽△EFC.又∵S△ADE : S△EFC = 4 : 9,
∴ AE : EC=2:3,则 AE : AC =2 : 5,
∴ S△ADE : S△ABC = 4 : 25,∴ S△ABC = 25.
7. 如图,△ABC 中,DE∥BC,DE 分别交 AB、AC 于 点 D、E,S△ADE=2 S△DCE,求 S△ADE ∶S△ABC.
解:过点 D 作 AC 的垂线,交点为 F,则
又∵ DE∥BC,∴ △ADE ∽△ABC.
即 S△ADE : S△ABC =4 : 9.
初中数学湘教版九年级上册3.4 相似三角形的判定与性质评优课课件ppt: 这是一份初中数学湘教版九年级上册3.4 相似三角形的判定与性质评优课课件ppt,共11页。PPT课件主要包含了探究1,练一练等内容,欢迎下载使用。
初中数学北师大版九年级上册7 相似三角形的性质习题课件ppt: 这是一份初中数学北师大版九年级上册7 相似三角形的性质习题课件ppt,共12页。
北师大版九年级上册7 相似三角形的性质习题课件ppt: 这是一份北师大版九年级上册7 相似三角形的性质习题课件ppt,共24页。