|教案下载
终身会员
搜索
    上传资料 赚现金
    2.4 二次函数y=ax2+bx+c的图象 教案2
    立即下载
    加入资料篮
    2.4 二次函数y=ax2+bx+c的图象 教案201
    2.4 二次函数y=ax2+bx+c的图象 教案202
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学1 二次函数教学设计

    展开
    这是一份数学1 二次函数教学设计,共4页。教案主要包含了创设问题情境,引入新课,新课讲解,课堂练习,课时小结,课后作业等内容,欢迎下载使用。

    课 题
    2.4.1 二次函数y=ax2+bx+c的图象
    课型
    新授课
    教学目标
    1.会用描点法画出二次函数 与 的图象;


    2.能结合图象确定抛物线 与 的对称轴与顶点坐标;


    3.通过比较抛物线 与 同 的相互关系,培养观察、分析、总结的能力;



    教学重点
    画出形如 与形如 的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标.
    教学难点
    理解函数 、 与 及其图象间的相互关系.
    教学方法
    探索研究法。
    教学后记
    一、创设问题情境,引入新课


    我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.


    二、新课讲解


    1、比较函数y=3x2与y=3(X-1)2的图象的性质.


    (1)完成下表,并比较3x2和3(x-1)2的值,


    它们之间有什么关系?


    X
    -3
    -2
    -1
    0
    1
    2
    3
    4

    3x2









    3(x-1)2









    (2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?





    (3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?


    (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?


    请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.


    (1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27.


    (2)用描点法作出y=3(x-1)2的图象,如上图.


    (3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).


    (4)当x>1时,函数y=3(x-1)2的值随x值的增大而增大,x<1时,y=3(x-1)2的值随x值的增大而减小.


    能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?


    y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.


    能像上节课那样比较它们图象的性质吗?


    相同点:


    a.图象都中抛物线,且形状相同,开口方向相同.


    b. 都是轴对称图形.


    c.都有最小值,最小值都为0.


    d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.


    不同点:


    a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.


    b. 它们的位置不问.


    c. 它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),


    联系:


    把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.


    2、做一做


    在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.


    [生]图象如下





    它们的图象的性质比较如下:


    相同点:


    a.图象都是抛物线,且形状相同,开口方向相同.


    b. 都足轴对称图形,对称轴都为x=1.


    c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.


    不同点:


    a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.


    b. 它们的位置不同.


    联系:


    把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.


    3、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.


    通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?


    二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.


    大家还记得y=3x2与y=3x2-1的图象之间的关系吗?


    记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.


    你能系统总结一下吗?


    将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.


    下面我们就一般形式来进行总结.


    大屏幕显示


    一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.


    (1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c>0时,向上移动,当c<0时,向下移动.


    (2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h>0时,向右移动,当h<0时,向左移动.


    (3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.


    因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.


    下面大家经过讨论之后,填写下表:


    y=a(x-h)2+k
    开口方向
    对称轴
    顶点坐标

    a>0




    a<0




    4、议一议


    (1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?


    (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?


    (3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?


    在不画图象的情况下,你能回答上面的问题吗?


    (1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.


    (2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).


    (3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x<-1时,y的值随x值的增大而减小;当x>-1时,y的值随x值的增大而增大.


    三、课堂练习


    看大屏幕


    四、课时小结


    本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.


    五、课后作业


    习题2.4 第1题
    备注
    相关教案

    初中1 二次函数教案及反思: 这是一份初中<a href="/sx/tb_c102698_t8/?tag_id=27" target="_blank">1 二次函数教案及反思</a>,共5页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    初中华师大版第26章 二次函数26.2 二次函数的图象与性质2. 二次函数y=ax2+bx+c的图象与性质优秀第4课时教案及反思: 这是一份初中华师大版第26章 二次函数26.2 二次函数的图象与性质2. 二次函数y=ax2+bx+c的图象与性质优秀第4课时教案及反思,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    数学北师大版第二章 二次函数1 二次函数教案及反思: 这是一份数学北师大版第二章 二次函数1 二次函数教案及反思,共6页。教案主要包含了教学目标,重点、难点,经典例题,归纳小结与学法指导,课堂练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map