北师大版八年级上册2 平面直角坐标系教学设计及反思
展开教学目标:
知识与技能
掌握直角三角形的判别条件,并能进行简单应用;
教学思考
进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
解决问题
会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
重点和难点
重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
难点
会辨析哪些问题应用哪个结论.
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△ABC的两边AB=5,AC=12,则BC=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13; 6, 8, 10; 8,15,17.
(1)这三组数都满足a2 +b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形.
满足a2 +b2=c2的三个正整数,称为勾股数.
⒋例1 一个零件的形状如左图所示,按规定这个零件中 ∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角.
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
⒋习题1.3
课堂小结:
⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形.
⒉满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
课后记录:
⒈
⒉
八年级数学教案:得到直角三角形吗: 这是一份八年级数学教案:得到直角三角形吗,共10页。教案主要包含了学生起点分析,学习任务分析,教法学法,教学过程设计,教学反思等内容,欢迎下载使用。
初中数学北师大版八年级上册2 一定是直角三角形吗教案: 这是一份初中数学北师大版八年级上册2 一定是直角三角形吗教案,共4页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。
初中数学北师大版八年级上册2 一定是直角三角形吗教案设计: 这是一份初中数学北师大版八年级上册2 一定是直角三角形吗教案设计,共4页。