北师大版八年级上册3 勾股定理的应用教学设计及反思
展开第3讲
讲
勾股定理的应用
通过对本节课的学习,你能够:
利用勾股定理解决实际生活中的一些问题.
掌握几何体的表面展开图,会判断最短路径.
概 述
【知识导图】
教学过程
一、导入
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
二、知识讲解
考点1 生活中的立体图形
考点1 圆柱体表面上两点间的最短距离
A B
C D
C
第一环节:情境引入
情景1:
提出问题:从A到D怎样走最近?
情景2:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,已知圆柱体高为12cm,底面半径为3cm,你们想一想,蚂蚁怎么走最近?
意图:
通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.
效果:
从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.
第二环节:合作探究
内容:
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
意图:
通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.
效果:
学生可能汇总以下四种方案:
A’
A’
A’
(1) (2) (3) (4)
学生很容易算出:情形(1)中A→B的路线长为:,
情形(2)中A→B的路线长为:
所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,情形(3)A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.
如图:
(1)中A→B的路线长为:.
(2)中A→B的路线长为:>AB.
(3)中A→B的路线长为:AO+OB>AB.
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,已知圆柱体高为12cm,底面半径为3cm,π取3,则.
注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能.但这一拓展使学生无法去论证最短路径究竟是哪条.因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上.
方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:
1.审题——分析实际问题;
2.建模——建立相应的数学模型;
3.求解——运用勾股定理计算;
4.检验——是否符合实际问题的真实性.
考点2 勾股定理的其他应用
三 、例题精析
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
解答:(2)
∴AD和AB垂直.
意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,利用允许的工具灵活处理问题.
效果:
先鼓励学生自己寻找办法,再让学生说明李叔叔的办法的合理性.当刻度尺较短时,学生可能会在上面解决问题的基础上,想出多种办法,如利用分段相加的方法量出AB,AD和BD的长度,或在AB,AD边上各量一段较小长度,再去量以它们为边的三角形的第三边,从而得到结论.
三 、例题精析
类型一圆柱体表面上两点间的最短距离
1.有一圆柱体高为10cm,底面圆的半径为4cm.在AA1上有一只蚂蚁Q,QA=3cm;在BB1上有一滴蜂蜜P,PB1=2cm.若蚂蚁想要沿圆柱体侧面爬到P点吃蜂蜜,则爬行的最短路径长为________(π取整数3)
【解析】
【总结与反思】
2.如图所示,有一根高为2m的木柱,它的底面周长为0.3m,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕圈,一直缠到起点的正上方为止.问:小明至少需要准备一根多长的彩带?
【解析】
【总结与反思】
类型二勾股定理的其他应用
1.如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.
(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?
(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?
【解析】
【总结与反思】
基础
1. 如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知AB=5cm,树干的直径为4cm.计算出藤蔓一晚上生长的最短长度是( )(π取整数3)
2.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )cm.
3.如图,甲轮船以16海里/时的速度离开港口O,向东南方向航行,乙轮船在同时同地,向西南方向航行.已知:它们离开港口O一个半小时后,相距30海里,求:乙轮船每小时航行多少海里?
巩固
1.有一圆柱体高为10cm,底面圆的半径为4cm.在AA1上有一只蚂蚁Q,QA=3cm;在BB1上有一滴蜂蜜P,PB1=2cm.若蚂蚁想要沿圆柱体侧面爬到P点吃蜂蜜,则爬行的最短路径长为________(π取整数3)
2.如图,长方体的长为15cm,宽为10cm,高为20cm,BC=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是_______.
3.如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
拔高
1.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.(容器的厚度忽略不计)
2.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为________cm.
3.如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离602千米的地方有一城市A.
(1)问:A市是否会受到此台风的影响,为什么?
(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.
五 、课堂小结
六 、课后作业
基础
1.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是( )
A.6 cm B.8 cm C.10 cm D.12 cm
2.如图,一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸盒的A点沿纸盒面爬到B点,那么它所行的最短路线的长是( )
A
B
A、(3+8)cm B、10cm C、14cm D、无法确定
3. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题
小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?(请画出示意图解答)
巩固
1.如图圆柱形玻璃杯高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁A,离杯口上沿4cm与蜜蜂相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______________cm。
2.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为 dm.
3.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为 .
拔高
如图,A.B两个村子在河CD的同侧,A.B两村到河的距离分别为AC=1km,BD=3km,且CD=3km,现要在河边上建一个水厂向A.B两村输送自来水,铺设水管的费用为20000元/km,请你在CD上选择水厂位置O,使铺设水管的费用最低,并求出铺设水管的总费用.
2.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.
(1)请用直尺和圆规作出C处的位置;
(2)求我国海监船行驶的航程BC的长.
适用学科
初中数学
适用年级
初二
适用区域
北师版区域
课时时长(分钟)
120
知识点
1.圆柱或长方体表面上两点间的最短距离;
2.勾股定理的其他应用(方程思想的运用).
教学目标
1.通过观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
教学重点
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点.
教学难点
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的难点.
北师大版八年级上册3 勾股定理的应用教案设计: 这是一份北师大版八年级上册3 勾股定理的应用教案设计,共22页。教案主要包含了教学建议,知识导图,总结与反思等内容,欢迎下载使用。
初中数学北师大版八年级上册3 平行线的判定教案设计: 这是一份初中数学北师大版八年级上册3 平行线的判定教案设计,共24页。教案主要包含了知识导图,总结与反思等内容,欢迎下载使用。
北师大版第六章 数据的分析综合与测试教学设计: 这是一份北师大版第六章 数据的分析综合与测试教学设计,共14页。教案主要包含了知识导图,总结与反思等内容,欢迎下载使用。