
还剩1页未读,
继续阅读
所属成套资源:北师大版八年级数学上册全套学案
成套系列资料,整套一键下载
- 1.1 第1课时 认识勾股定理 导学案 学案 5 次下载
- 1.3 勾股定理的应用 导学案 学案 3 次下载
- 1.2 一定是直角三角形吗 导学案 学案 3 次下载
- 2.1 认识无理数 导学案 学案 3 次下载
- 2.2 第1课时 算术平方根 导学案 学案 4 次下载
北师大版八年级上册1 探索勾股定理第2课时导学案
展开
这是一份北师大版八年级上册1 探索勾股定理第2课时导学案,共2页。学案主要包含了讲解例题,议一议,作业 1等内容,欢迎下载使用。
第2课时 验证勾股定理
学习目标
1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动发展学生的探究意识和合作交流的习惯
2、掌握勾股定理和它的简单应用。
重点难点
重点:能熟练应用拼图法证明勾股定理.
难点:用面积证勾股定理.
学习过程
一、创设问题情境,激发学生学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学们交流。在同学操作的过程中,教师展示投影1(书中P7图1—7)接着提问:大正方形的面积可表示为什么?同学们回答有两种可能:(1)(a+b)2(2)
在同学交流形成共识后教师把这两种表示大正方形面积的式子用等号连接起来。
请同学们对上式进行化简,得到:
即
这就可以从理论上说明了勾股定理存在。
请同学们回去用别的拼图方法说明勾股定理。
二、讲解例题
例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意,可以先画出符合题意的图形。如右图,图中△ABC的∠C=90°,AC = 4000米,AB=5000 米欲求飞机每时飞行多少千米,就要知道20 秒时间里飞行的路程,即图中的CB的长,由于△ ABC的斜边AB =5000米,AC= 4000 米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算。
解:由勾股定理得
即 BC=3千米
飞机 20秒飞行3 千米.那么它 l 小时飞行的距离为:
(千米/时)
答:飞机每小时飞行 540千米。
三、议一议:展示投影 2(书中图1—9)观察上图应用数格子方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
四、作业 1、课文 P1 习题1.2 1、2。
第2课时 验证勾股定理
学习目标
1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动发展学生的探究意识和合作交流的习惯
2、掌握勾股定理和它的简单应用。
重点难点
重点:能熟练应用拼图法证明勾股定理.
难点:用面积证勾股定理.
学习过程
一、创设问题情境,激发学生学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学们交流。在同学操作的过程中,教师展示投影1(书中P7图1—7)接着提问:大正方形的面积可表示为什么?同学们回答有两种可能:(1)(a+b)2(2)
在同学交流形成共识后教师把这两种表示大正方形面积的式子用等号连接起来。
请同学们对上式进行化简,得到:
即
这就可以从理论上说明了勾股定理存在。
请同学们回去用别的拼图方法说明勾股定理。
二、讲解例题
例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意,可以先画出符合题意的图形。如右图,图中△ABC的∠C=90°,AC = 4000米,AB=5000 米欲求飞机每时飞行多少千米,就要知道20 秒时间里飞行的路程,即图中的CB的长,由于△ ABC的斜边AB =5000米,AC= 4000 米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算。
解:由勾股定理得
即 BC=3千米
飞机 20秒飞行3 千米.那么它 l 小时飞行的距离为:
(千米/时)
答:飞机每小时飞行 540千米。
三、议一议:展示投影 2(书中图1—9)观察上图应用数格子方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
四、作业 1、课文 P1 习题1.2 1、2。