还剩28页未读,
继续阅读
2020版高考一轮复习生物通用版学案:第五单元第二讲孟德尔的豌豆杂交实验(二)
展开
第二讲孟德尔的豌豆杂交实验(二)
知识体系——定内容
核心素养——定能力
生命观念
通过对基因的自由组合定律的实质分析,从细胞水平阐述生命的延续性,建立起进化与适应的观点
科学思维
通过基因分离定律与自由组合定律的关系解读,研究自由组合定律的解题规律及方法,培养归纳与概括、演绎与推理及逻辑分析能力
科学探究
通过个体基因型的探究与自由组合定律的验证实验,掌握实验操作的方法,培养实验设计及结果分析的能力
考点一 两对相对性状杂交实验与自由组合定律[重难深化类]
1.假说—演绎过程
2.自由组合定律
3.孟德尔获得成功的原因
[基础自测]
1.判断下列叙述的正误
(1)在F2中重组类型占10/16,亲本类型占6/16(×)
(2)F1产生基因型YR的卵细胞和基因型YR的精子数量之比为1∶1(×)
(3)在F2的黄色皱粒豌豆中纯合子所占比例为1/3(√)
(4)自由组合定律发生于减数第一次分裂中期(×)
(5)自由组合定律的实质是等位基因分离的同时,非等位基因自由组合(×)
(6)运用统计学的方法分析结果是孟德尔获得成功的原因之一(√)
2.选择填空
下面为某同学总结的有丝分裂、减数分裂和受精作用的联系图,有些联系是错误的,其中联系错误的是________。(填图中序号)
提示:⑤⑧ 有丝分裂后期姐妹染色单体分离,①正确;减数第一次分裂后期会发生同源染色体分离,非同源染色体自由组合,②和③正确;受精作用时同源染色体汇合,④正确;有丝分裂中姐妹染色单体分离不会导致等位基因分离,⑤错误;同源染色体的分离会导致等位基因分离,⑥正确;非同源染色体自由组合会导致非同源染色体上非等位基因自由组合,⑦正确;非同源染色体上的非等位基因自由组合发生在减数第一次分裂,⑧错误。
3.学透教材、理清原因、规范答题用语专练
下面两图分别是具有一对和两对等位基因的个体杂交的遗传图解。已知同一个体产生的各种配子类型数量相等。请思考并回答:
(1)基因分离定律的实质体现在图中的________,基因自由组合定律的实质体现在图中的________。(均填序号)
(2)③⑥过程表示__________,这一过程中子代遗传物质的来源情况如何?________________________________________________________________________
________________________________________________________________________。
(3)如果A和a、B和b(完全显性)各控制一对相对性状,并且彼此间对性状的控制互不影响,则图2中所产生的子代中表现型有________种,它们的比例为____________。
(4)图中哪些过程可以发生基因重组?________。
答案:(1)①② ④⑤ (2)受精作用 细胞核中遗传物质一半来自父方,另一半来自母方,细胞质中遗传物质几乎全部来自母方 (3)4 9∶3∶3∶1 (4)④⑤
4.据图判断,下列①~④中可遵循基因自由组合定律的是________。
答案:②③④
1.用分离定律分析两对相对性状的杂交实验
F2
1YY(黄) 2Yy(黄)
1yy(绿)
1RR(圆)2Rr(圆)
1YYRR、2YyRR、2YYRr、4YyRr (黄圆)
1yyRR、2yyRr(绿圆)
1rr(皱)
1YYrr、2Yyrr(黄皱)
1yyrr(绿皱)
2.F2基因型和表现型的种类及比例
(1)
(2)
3.基因分离定律与自由组合定律的关系及相关比例
[对点落实]
1.(2019·金山区一模)在孟德尔两对相对性状杂交实验中,F1黄色圆粒豌豆(YyRr)自交产生F2。下列表述正确的是( )
A.F1产生4种精子,比例为1∶1∶1∶1
B.F1可产生基因型为Yy的卵细胞
C.基因自由组合定律的实质指F1产生的雌雄配子随机结合
D.F2中黄色圆粒豌豆约占3/16
解析:选A F1(YyRr)产生4种配子,配子类型及比例为YR∶Yr∶yR∶yr=1∶1∶1∶1;Y和y属于等位基因,在产生配子的过程中应该分离,产生的配子中只有其中的一个;基因自由组合定律是指F1在减数分裂过程中,同源染色体分离,非同源染色体上的非等位基因自由组合;F2中黄色圆粒豌豆为双显性性状(Y_R_)约占9/16。
2.如图为某植株自交产生后代的过程示意图,下列描述错误的是( )
A.A、a与B、b的自由组合发生在①过程
B.②过程发生雌、雄配子的随机结合
C.M、N、P分别代表16、9、3
D.该植株测交后代性状分离比为1∶1∶1∶1
解析:选D ①过程为减数分裂产生配子的过程,A、a与B、b的自由组合发生在减数第一次分裂后期;②过程为受精作用,发生雌、雄配子的随机结合;①过程产生4种配子,则雌、雄配子的随机结合的方式是4×4=16(种),基因型=3×3=9(种),表现型为3种;根据F2的3种表现型比例为12∶3∶1,得出A_B_个体表现型与A_bb个体或aaB_个体相同,该植株测交后代基因型比例为1(AaBb)∶1(Aabb)∶1(aaBb)∶1(aabb),则表现型的比例为2∶1∶1。
3.某动物细胞中位于常染色体上的基因A、B、C分别对a、b、c为显性。用两个纯合个体杂交得F1,F1测交结果为aabbcc∶AaBbCc∶aaBbcc∶AabbCc=1∶1∶1∶1。则F1体细胞中三对基因在染色体上的位置是( )
解析:选B F1测交,即F1×aabbcc,其中aabbcc个体只能产生abc一种配子,而测交结果为aabbcc∶AaBbCc∶aaBbcc∶AabbCc=1∶1∶1∶1,说明F1产生的配子基因型分别为abc、ABC、aBc、AbC,其中a和c、A和C总在一起,说明A和a、C和c两对等位基因位于同一对同源染色体上,且A和C在同一条染色体上,a和c在同一条染色体上。
[易错提醒]
澄清自由组合定律的两点易误
(1)发生时期:自由组合发生于配子形成(MⅠ后期)过程中,而不是受精作用过程中。
(2)组合基因:能发生自由组合的是位于非同源染色体上的非等位基因,而不仅指“非等位基因”,因为同源染色体上也有非等位基因。
自由组合定律的实验验证方法
自交法
F1
如果后代性状分离比符合9∶3∶3∶1或(3∶1)n(n≥3),则控制两对或多对相对性状的基因位于两对或多对同源染色体上,符合自由组合定律,反之则不符合
测交法
如果测交后代性状分离比符合1∶1∶1∶1或(1∶1)n(n≥3),则控制两对或多对相对性状的基因位于两对或多对同源染色体上,符合自由组合定律,反之则不符合
配子法
F1减数分裂
产生数量相等的2n(n为等位基因对数)种配子,则符合自由组合定律
[对点落实]
4.(2019·河南六市联考)某单子叶植物非糯性(A)对糯性(a)为显性,叶片抗病(T)对易染病(t)为显性,花粉粒长形(D)对圆形(d)为显性,三对等位基因分别位于三对同源染色体上,非糯性花粉遇碘液变蓝,糯性花粉遇碘液为棕色。现有四种纯合子,其基因型分别为:①AATTdd,②AAttDD,③AAttdd,④aattdd,下列说法正确的是( )
A.若采用花粉鉴定法验证基因的分离定律,应选择亲本①和③杂交
B.若采用花粉鉴定法验证基因的自由组合定律,可以选择亲本①和②杂交
C.若培育糯性抗病优良品种,应选用①和④杂交
D.若将①和④杂交所得F1的花粉用碘液染色,可观察到比例为1∶1∶1∶1的四种花粉粒
解析:选C 根据题意,若采用花粉鉴定法验证基因的分离定律,应选择亲本①×④或②×④或③×④,然后再自交;若采用花粉鉴定法验证基因的自由组合定律,应选择亲本②×④;若培育糯性抗病优良品种,应选用①和④杂交;将①和④杂交所得F1的基因型为AaTtdd,由于只有非糯性和糯性花粉遇碘液出现颜色变化,因此F1花粉用碘液染色,可观察到比例为1∶1的两种花粉粒。
5.(2018·全国卷Ⅲ)某小组利用某二倍体自花传粉植物进行两组杂交实验,杂交涉及的四对相对性状分别是:红果(红)与黄果(黄)、子房二室(二)与多室(多)、圆形果(圆)与长形果(长)、单一花序(单)与复状花序(复)。实验数据如下表。
组别
杂交组合
F1表现型
F2表现型及个体数
甲
红二×黄多
红二
450红二、160红多、150黄二、50黄多
红多×黄二
红二
460红二、150红多、160黄二、50黄多
乙
圆单×长复
圆单
660圆单、90圆复、90长单、160长复
圆复×长单
圆单
510圆单、240圆复、240长单、10长复
回答下列问题:
(1)根据表中数据可得出的结论是:控制甲组两对相对性状的基因位于________________上,依据是____________________________________________;控制乙组两对相对性状的基因位于________(填“一对”或“两对”)同源染色体上,依据是________________________________________________________________________
________________________________________________________________________。
(2)某同学若用“长复”分别与乙组的两个F1进行杂交,结合表中数据分析,其子代的统计结果不符合________的比例。
解析:(1)由于表中数据显示,甲组F2的表现型及比例为红二∶红多∶黄二∶黄多≈ 9∶3∶3∶1,该比例符合基因的自由组合定律的性状分离比,所以控制甲组两对相对性状的基因位于非同源染色体上。乙组F2的表现型中,每对相对性状表现型的比例都符合3∶1,即圆形果∶长形果=3∶1,单一花序∶复状花序=3∶1,而圆单∶圆复∶长单∶长复不符合9∶3∶3∶1的性状分离比,其遗传不符合自由组合定律,所以控制乙组两对相对性状的基因位于一对同源染色体上。(2)根据乙组的相对性状表现型分离比可知,控制乙组两对相对性状的基因位于一对同源染色体上,所以用“长复(隐性纯合子)”分别与乙组的两个F1进行杂交,不会出现测交结果为1∶1∶1∶1的比例。
答案:(1)非同源染色体 F2中两对相对性状表现型的分离比符合9∶3∶3∶1 一对 F2中每对相对性状表现型的分离比都符合3∶1,而两对相对性状表现型的分离比不符合9∶3∶3∶1 (2)1∶1∶1∶1
6.(2013·全国卷)已知玉米子粒黄色(A)对白色(a)为显性,非糯(B)对糯(b)为显性,这两对性状自由组合。请选用适宜的纯合亲本进行一个杂交实验来验证:①子粒的黄色与白色的遗传符合分离定律;②子粒的非糯与糯的遗传符合分离定律;③以上两对性状的遗传符合自由组合定律。要求:写出遗传图解,并加以说明。
解析:根据题目要求“选择适宜纯合亲本”、“杂交实验”等关键词,可选择(纯合白非糯)aaBB和(纯合黄糯)AAbb或(纯合黄非糯)AABB和(纯合白糯)aabb作为亲本,杂交后F1均为AaBb(杂合黄非糯)。F1自交,若F2中黄粒(A_)∶白粒(aa)=3∶1,则说明子粒的黄色与白色的遗传符合分离定律,同理,若F2中非糯粒(B_)∶糯粒(bb)=3∶1,则说明子粒的非糯与糯的遗传符合基因分离定律。若F2中黄非糯粒∶黄糯粒∶白非糯粒∶白糯粒=9∶3∶3∶1,即A_B_∶A_bb∶aaB_∶aabb=9∶3∶3∶1,则说明以上两对性状的遗传符合自由组合定律。
答案:亲本 (纯合白非糯)aaBB×AAbb(纯合黄糯)
亲本或为: (纯合黄非糯)AABB×aabb(纯合白糯)
↓
F1 AaBb(杂合黄非糯)
↓
F2
F2子粒中:
①若黄粒(A_)∶白粒(aa)=3∶1,则验证该性状的遗传符合分离定律;
②若非糯粒(B_)∶糯粒(bb)=3∶1,则验证该性状的遗传符合分离定律;
③若黄非糯粒∶黄糯粒∶白非糯粒∶白糯粒=9∶3∶3∶1即:A_B_∶A_bb∶aaB_∶aabb=9∶3∶3∶1,则验证这两对性状的遗传符合自由组合定律。
考点二 自由组合定律的解题规律及方法[题点精析类]
题型一 “拆分法”求解自由组合定律计算问题
1.(2014·海南高考改编)基因型为AaBbDdEeGgHhKk的个体自交,假定这7对等位基因自由组合。
(1)1对等位基因杂合、6对等位基因纯合的个体出现的概率为________;
(2)3对等位基因杂合、4对等位基因纯合的个体出现的概率为________;
(3)5对等位基因杂合、2对等位基因纯合的个体出现的概率为________;
(4)7对等位基因纯合个体出现的概率与7对等位基因杂合个体出现的概率为________。
解析:基因型为AaBbDdEeGgHhKk个体自交,后代中每对等位基因自交子代中纯合子和杂合子的概率各占1/2,所以自交子代中1对杂合、6对纯合的个体有C=7种类型(利用数学排列组合方法进行分析),且每种类型出现的概率均为1/27=1/128,故此类个体出现的概率为C(1/2)7=7/128;同理,自交子代中3对杂合、4对纯合的个体占C(1/2)7=35/128;自交子代中5对杂合、2对纯合的个体有C(1/2)7=21/128;自交子代中7对等位基因纯合与7对等位基因杂合的个体出现的概率均为(1/2)7=1/128。
答案:(1)7/128 (2)35/128 (3)21/128 (4)1/128
[类题通法]
“拆分法”解答自由组合问题的一般方法
首先,将自由组合定律问题转化为若干个分离定律问题。在独立遗传的情况下,有几对等位基因就可分解为几组分离定律问题。如AaBb×Aabb,可分解为两组:Aa×Aa,Bb×bb。然后,按分离定律进行逐一分析。最后,将获得的结果进行综合,得到正确答案。举例如下:
问题举例
计算方法
AaBbCc×AabbCc,求其杂交后代可能的表现型种类数
可分解为三个分离定律:
Aa×Aa→后代有2种表现型(3A_∶1aa)
Bb×bb→后代有2种表现型(1Bb∶1bb)
Cc×Cc→后代有2种表现型(3C_∶1cc)
所以,AaBbCc×AabbCc的后代中有2×2×2=8种表现型
AaBbCc×AabbCc,后代中表现型同A_bbcc个体的概率计算
Aa×Aa Bb×bb Cc×Cc
↓ ↓ ↓
3/4(A_)×1/2(bb)×1/4(cc)=3/32
AaBbCc×AabbCc,求子代中不同于亲本的表现型(基因型)
不同于亲本的表现型=1-亲本的表现型=1-(A_B_C_+A_bbC_),不同于亲本的基因型=1-亲本的基因型=1-(AaBbCc+AabbCc)
题型二 “逆向组合法”推断亲本基因型问题
2.(2017·全国卷Ⅱ)若某哺乳动物毛色由3对位于常染色体上的、独立分配的等位基因决定,其中,A基因编码的酶可使黄色素转化为褐色素;B基因编码的酶可使该褐色素转化为黑色素;D基因的表达产物能完全抑制A基因的表达;相应的隐性等位基因a、b、d的表达产物没有上述功能。若用两个纯合黄色品种的动物作为亲本进行杂交,F1均为黄色,F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,则杂交亲本的组合是( )
A.AABBDD×aaBBdd,或AAbbDD×aabbdd
B.aaBBDD×aabbdd,或AAbbDD×aaBBDD
C.aabbDD×aabbdd,或AAbbDD×aabbdd
D.AAbbDD×aaBBdd,或AABBDD×aabbdd
解析:选D F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,总数为64,故F1中应有3对等位基因,且遵循自由组合定律,由此对各项进行逐项分析即可得出答案。A项,AABBDD×aaBBdd的F1中只有2对等位基因,AAbbDD×aabbdd的F1中也只有2对等位基因;B项,aaBBDD×aabbdd的F1中只有2对等位基因,AAbbDD×aaBBDD的F1中也只有2对等位基因;C项,aabbDD×aabbdd的F1中只有1对等位基因,且F1、F2都是黄色,AAbbDD×aabbdd的F1中只有2对等位基因。A、B、C中的亲本组合都不符合。D项,AAbbDD×aaBBdd或AABBDD×aabbdd的F1中均含有3对等位基因,F1均为黄色,F2中毛色表现型会出现黄∶褐∶黑=52∶3∶9的数量比,符合要求。
[类题通法]
“逆向组合法”推断亲本基因型的一般思路
(1)方法:将自由组合定律的性状分离比拆分成分离定律的分离比分别分析,再运用乘法原理进行逆向组合。
(2)题型示例:
①9∶3∶3∶1⇒(3∶1)(3∶1)⇒(Aa×Aa)(Bb×Bb);
②1∶1∶1∶1⇒(1∶1)(1∶1)⇒(Aa×aa)(Bb×bb);
③3∶3∶1∶1⇒(3∶1)(1∶1)⇒(Aa×Aa)(Bb×bb)或(Aa×aa)(Bb×Bb);
④3∶1⇒(3∶1)×1⇒(Aa×Aa)(BB×_ _)或(Aa×Aa)(bb×bb)或(AA×_ _)(Bb×Bb)或(aa×aa)(Bb×Bb)。
题型三 “十字交叉法”解答自由组合的概率计算问题
3.一个正常的女人与一个并指(Bb)的男人结婚,他们生了一个白化病且手指正常的孩子。若他们再生一个孩子:
(1)只患并指的概率是________。
(2)只患白化病的概率是________。
(3)既患白化病又患并指的男孩的概率是________。
(4)只患一种病的概率是________。
(5)患病的概率是________。
解析:由题意知,第1个孩子的基因型应为aabb,则该夫妇基因型应分别为妇:Aabb;夫:AaBb。依据该夫妇基因型可知,孩子中并指的概率应为1/2(非并指概率为1/2),白化病的概率应为1/4(非白化病概率应为3/4),则:(1)再生一个只患并指孩子的概率为:并指概率-并指又白化概率=1/2-1/2×1/4=3/8。(2)只患白化病的概率为:白化病概率-白化又并指的概率=1/4-1/2×1/4=1/8。(3)生一个既白化又并指的男孩的概率为:男孩出生率×白化病概率×并指概率=1/2×1/4×1/2=1/16。(4)后代只患一种病的概率为:并指概率×非白化病概率+白化病概率×非并指概率=1/2×3/4+1/4×1/2=1/2。(5)后代中患病的概率为:1-全正常(非并指、非白化)=1-1/2×3/4=5/8。
答案:(1)3/8 (2)1/8 (3)1/16 (4)1/2 (5)5/8
[类题通法]
用“十字交叉法”解答两病概率计算问题
(1)当两种遗传病之间具有“自由组合”关系时,各种患病情况的概率分析如下:
(2)根据序号所示进行相乘得出相应概率再进一步拓展如下表:
序号
类型
计算公式
①
同时患两病概率
mn
②
只患甲病概率
m(1-n)
③
只患乙病概率
n(1-m)
④
不患病概率
(1-m)(1-n)
拓展求解
患病概率
①+②+③或1-④
只患一种病概率
②+③或1-(①+④)
考点三 基因自由组合定律的遗传特例及有关实验探究[题点精析类]
一、基因自由组合现象的特殊分离比问题
1.妙用“合并同类型”巧解特殊分离比
(1)“和”为16的特殊分离比成因
①基因互作:
类型
F1(AaBb) 自
交后代比例
F1测交
后代比例
Ⅰ
存在一种显性基因时表现为同一性状,其余正常表现
9∶6∶1
1∶2∶1
Ⅱ
两种显性基因同时存在时,表现为一种性状,否则表现为另一种性状
9∶7
1∶3
Ⅲ
当某一对隐性基因成对存在时表现为双隐性状,其余正常表现
9∶3∶4
1∶1∶2
Ⅳ
只要存在显性基因就表现为一种性状,其余正常表现
15∶1
3∶1
②显性基因累加效应:
a.表现:
b.原因:A与B的作用效果相同,但显性基因越多,其效果越强。
(2)“和”小于16的特殊分离比成因
成因
后代比例
①
显性纯合致死
(AA、BB致死)
自交子代
AaBb∶Aabb∶aaBb∶aabb=4∶2∶2∶1,其余基因型个体致死
测交子代
AaBb∶Aabb∶aaBb∶aabb=1∶1∶1∶1
②
隐性纯合致死
(自交情况)
自交子代出现9∶3∶3(双隐性致死);自交子代出现9∶1(单隐性致死)
2.基因完全连锁遗传现象的分析
基因完全连锁(不考虑交叉互换)时,不符合基因的自由组合定律,其子代也呈现特定的性状分离比,如下图所示:
[题点全练]
题点(一) 基因互作与性状分离比9∶3∶3∶1的变式
1.(2016·全国卷Ⅲ)用某种高等植物的纯合红花植株与纯合白花植株进行杂交,F1全部表现为红花。若F1自交,得到的F2植株中,红花为272株,白花为212株;若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株。根据上述杂交实验结果推断,下列叙述正确的是( )
A.F2中白花植株都是纯合体
B.F2中红花植株的基因型有2种
C.控制红花与白花的基因在一对同源染色体上
D.F2中白花植株的基因型种类比红花植株的多
解析:选D 本题的切入点在“若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株”上,相当于测交后代表现出1∶3的分离比,可推断该相对性状受两对等位基因控制,且两对基因独立遗传。设相关基因为A、a和B、b,则A_B_表现为红色,A_bb、aaB_、aabb表现为白色,因此F2的白色植株中既有纯合体又有杂合体;F2中红花植株的基因型有AaBb、AABB、AaBB、AABb 4种;控制红花与白花的两对基因独立遗传,位于两对同源染色体上;F2中白花植株的基因型有5种,红花植株的基因型有4种。
2.某种自花传粉的植物,抗病和易感病分别由基因R、r控制,细胞中另有一对等位基因B、b对抗病基因的抗性表达有影响,BB使植物抗性完全消失,Bb使抗性减弱,表现为弱抗病。将易感病与抗病植株杂交,F1都是弱抗病,自交得F2表现易感病∶弱抗病∶抗病的比分别为7∶6∶3。下列推断正确的是( )
A.亲本的基因型是RRBB、rrbb
B.F2的弱抗病植株中纯合子占1/3
C.F2中全部抗病植株自交,后代抗病植株占8/9
D.不能通过测交鉴定F2易感病植株的基因型
解析:选D 根据题意可知,亲本的基因型为bbRR和BBrr。F2弱抗病植株的基因型是BbR_,包括BbRR和BbRr两种,没有纯合子。F2中抗病植株的基因型是bbRR和bbRr两种,比例为1∶2,所以抗病植株自交,其中bbRR的后代全部是抗性;bbRr自交,后代抗病∶不抗病=3∶1,因此F2全部抗病植株自交,后代不抗病的比例是2/3×1/4=1/6,抗病植株占1-1/6=5/6。F2中易感病植株的基因型包括BBrr、Bbrr、bbrr、BBRR、BBRr,其中BBrr、Bbrr、bbrr与bbrr测交,后代全为易感病个体;BBRR与bbrr测交,后代全为弱抗病个体;BBRr与bbrr测交,后代中一半易感病,一半弱抗病,因此不能用测交法判断F2易感病个体的基因型。
[类题通法]
性状分离比9∶3∶3∶1的变式题解题步骤
题点(二) 致死效应引起的性状分离比的偏离
3.(2019·黄山一模)现用山核桃甲(AABB)、乙(aabb)两品种作亲本杂交得F1,F1测交结果如表,下列有关叙述错误的是( )
测交类型
测交后代基因型种类及比例
父本
母本
AaBb
Aabb
aaBb
aabb
F1
乙
1
2
2
2
乙
F1
1
1
1
1
A.F1产生的AB花粉50%不能萌发,不能实现受精
B.F1自交得F2,F2的基因型有9种
C.F1花粉离体培养,将得到四种表现型不同的植株
D.正反交结果不同,说明这两对基因的遗传不遵循自由组合定律
解析:选D 正常情况下,双杂合子测交后代四种表现型的比例应该是1∶1∶1∶1,而作为父本的F1测交结果为AaBb∶Aabb∶aaBb∶aabb=1∶2∶2∶2,说明父本F1产生的AB花粉有50%不能完成受精作用;F1自交后代中有9种基因型;F1花粉离体培养,将得到四种表现型不同的单倍体植株;根据题意可知,正反交均有四种表现型说明符合基因自由组合定律。
4.某种鱼的鳞片有4种表现型:单列鳞、野生型鳞、无鳞和散鳞,由位于两对同源染色体上的两对等位基因决定(用A、a,B、b表示),且BB对生物个体有致死作用,将无鳞鱼和纯合野生型鳞鱼杂交,F1有两种表现型,野生型鳞鱼占50%,单列鳞鱼占50%;选取F1中的单列鳞鱼进行互交,其后代中有上述4种表现型,这4种表现型的比例为6∶3∶2∶1,则F1的亲本基因型组合是( )
A.Aabb×AAbb B.aaBb×aabb
C.aaBb×AAbb D.AaBb×AAbb
解析:选C 该鱼的鳞片有4种表现型,由两对独立遗传的等位基因控制,并且BB有致死作用,可推知该鱼种群4种表现型由A_Bb、A_bb、aaBb和aabb这4类基因型控制。F1中的单列鳞鱼相互交配能产生4种表现型的个体,可推出F1中的单列鳞鱼的基因型为AaBb。无鳞鱼和纯合野生型鳞鱼杂交,能得到基因型为AaBb的单列鳞鱼,先考虑B和b这对基因,亲本的基因型为Bb和bb,而亲本野生型鳞鱼为纯合子,故bb为亲本野生型鳞鱼的基因型,Bb为无鳞鱼的基因型;再考虑A和a这对基因,由于无鳞鱼和纯合野生型鳞鱼杂交后代只有两种表现型,且比例为1∶1,结合以上分析,亲本的基因型为AA和aa。这样基因型组合方式有AABb×aabb和AAbb×aaBb两种,第一种组合中基因型为AABb的个体表现为单列鳞,与题意不符,排除。
5.(2019·临沂模拟)在小鼠的一个自然种群中,体色有黄色(Y)和灰色(y),尾巴有短尾(D)和长尾(d),两对相对性状的遗传符合基因的自由组合定律。任取一对黄色短尾个体经多次交配,F1的表现型为黄色短尾∶黄色长尾∶灰色短尾∶灰色长尾=4∶2∶2∶1。实验中发现有些基因型有致死现象(胚胎致死)。以下说法错误的是( )
A.黄色短尾亲本能产生4种正常配子
B.F1中致死个体的基因型共有4种
C.表现型为黄色短尾的小鼠的基因型只有1种
D.若让F1中的灰色短尾雌雄鼠自由交配,则F2中灰色短尾鼠占2/3
解析:选B 由题干分析知,当个体中出现YY或DD时会导致胚胎死亡,因此黄色短尾个体的基因型为YyDd,能产生4种正常配子;F1中致死个体的基因型共有5种;表现型为黄色短尾的小鼠的基因型只有YyDd 1种;若让F1中的灰色短尾(yyDd)雌雄鼠自由交配,则F2中灰色短尾鼠占2/3。
[类题通法]
解答致死类问题的方法技巧
(1)从每对相对性状分离比角度分析。如:
6∶3∶2∶1⇒(2∶1)(3∶1)⇒一对显性基因纯合致死。
4∶2∶2∶1⇒(2∶1)(2∶1)⇒两对显性基因纯合致死。
(2)从F2每种性状的基因型种类及比例分析。如BB致死:
题点(三) 基因累加引起的性状分离比的偏离
6.(2016·上海高考,有改动)控制棉花纤维长度的三对等位基因A/a、B/b、C/c对长度的作用相等,分别位于三对同源染色体上。已知基因型为aabbcc的棉花纤维长度为6 cm,每个显性基因增加纤维长度2 cm。棉花植株甲(AABbcc)与乙(aaBbCc)杂交,则F1的棉花纤维长度范围是( )
A.6~14 cm B.6~16 cm
C.8~14 cm D.8~16 cm
解析:选C AABbcc和aaBbCc杂交得到的F1中,显性基因最少的基因型为Aabbcc,显性基因最多的基因型为AaBBCc,由于每个显性基因增加纤维长度2 cm,所以F1的棉花纤维长度范围是(6+2)~(6+8)cm。
7.旱金莲由三对等位基因控制花的长度,这三对基因分别位于三对同源染色体上,作用相等且具叠加性。已知每个显性基因控制花长为5 mm,每个隐性基因控制花长为2 mm。花长为24 mm的同种基因型个体相互授粉,后代出现性状分离,其中与亲本具有同等花长的个体所占比例最可能是( )
A.1/16 B.2/16
C.5/16 D.6/16
解析:选D 由“花长为24 mm的同种基因型个体相互授粉,后代出现性状分离”说明花长为24 mm的个体为杂合子,再结合题干中的其他条件,可推知花长为24 mm的亲本中含4个显性基因和2个隐性基因,若两隐性基因杂合时,假设该个体基因型为AaBbCC,则其互交后代含4个显性基因和2个隐性基因的基因型有:AAbbCC、 aaBBCC、 AaBbCC,这三种基因型在后代中所占的比例为:1/4×1/4×1+1/4×1/4×1+1/2×1/2×1=6/16;若两隐性基因纯合时,假设该个体基因型为AABBcc,则后代基因仍为AABBcc,都与亲本具有同等花长,但选项中无此答案,因此只有D项符合题意。
[类题通法]
基因遗传效应累加的分析
相关原理
举例分析(以基因型AaBb为例)
自交后代比例
测交后代比例
显性基因在基因型中的个数影响性状表现
AABB∶(AaBB、AABb)∶(AaBb、aaBB、AAbb)∶(Aabb、aaBb)∶aabb=1∶4∶6∶4∶1
AaBb∶(Aabb、aaBb)∶aabb=1∶2∶1
题点(四) 基因完全连锁引起的性状分离比的偏离
8.已知桃树中,树体乔化与矮化为一对相对性状(由等位基因A、a控制),蟠桃果形与圆桃果形为一对相对性状(由等位基因B、b控制),以下是相关的两组杂交实验。
杂交实验一:乔化蟠桃(甲)×矮化圆桃(乙)→F1:乔化蟠桃∶矮化圆桃=1∶1
杂交实验二:乔化蟠桃(丙)×乔化蟠桃(丁)→F1:乔化蟠桃∶矮化圆桃=3∶1
根据上述实验判断,以下关于甲、乙、丙、丁四个亲本的基因在染色体上的分布情况正确的是( )
解析:选D 根据实验二:乔化×乔化→F1出现矮化,说明乔化相对于矮化是显性性状,蟠桃×蟠桃→F1出现圆桃,蟠桃对圆桃是显性性状。实验一后代中乔化∶矮化=1∶1,属于测交类型,说明亲本的基因型为Aa和aa;蟠桃∶圆桃=1∶1,也属于测交类型,说明亲本的基因型为Bb和bb,推出亲本的基因型为AaBb、aabb,如果这两对性状的遗传遵循自由组合定律,则实验一的杂交后代应出现2×2=4种表现型,比例应为1∶1∶1∶1,与实验一的杂交结果不符,说明上述两对相对性状的遗传不遵循自由组合定律,控制两对相对性状的基因不在两对同源染色体上。同理推知,杂交实验二亲本基因型应是AaBb、AaBb,基因图示如果为C,则杂交实验二后代比例为1∶2∶1,所以C不符合。
二、多对等位基因的自由组合现象问题
n对等位基因(完全显性)位于n对同源染色体上的遗传规律
相对性状
对数
等位基因
对数
F1配子
F1配子可
能组合数
F2基因型
F2表现型
种类
比例
种类
比例
种类
比例
1
1
2
1∶1
4
3
1∶2∶1
2
3∶1
2
2
22
(1∶1)2
42
32
(1∶2∶1)2
22
(3∶1)2
3
3
23
(1∶1)3
43
33
(1∶2∶1)3
23
(3∶1)3
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
n
n
2n
(1∶1)n
4n
3n
(1∶2∶1)n
2n
(3∶1)n
[题点全练]
9.某植物红花和白花为一对相对性状,同时受多对等位基因控制(如A、a;B、b;C、c……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_……)才开红花,否则开白花。现有甲、乙、丙、丁4个纯合白花品系,相互之间进行杂交,杂交组合、后代表现型及其比例如表所示,下列分析错误的是( )
组一
组二
组三
组四
组五
组六
P
甲×乙
乙×丙
乙×丁
甲×丙
甲×丁
丙×丁
F1
白色
红色
红色
白色
红色
白色
F2
白色
红色81∶白色175
红色27∶白色37
白色
红色81∶白色175
白色
A.组二F1基因型可能是AaBbCcDd
B.组五F1基因型可能是AaBbCcDdEE
C.组二和组五的F1基因型可能相同
D.这一对相对性状最多受四对等位基因控制,且遵循自由组合定律
解析:选D 组二和组五的F1自交,F2的分离比为红色∶白色=81∶175,即红花占81/(81+175)=(3/4)4,则可推测这对相对性状至少受四对等位基因控制,且四对基因分别位于四对同源染色体上,遵循自由组合定律。组二、组五的F1至少含四对等位基因,当该对性状受四对等位基因控制时,组二、组五的F1基因型都可为AaBbCcDd;当该对性状受五对等位基因控制时,组五F1基因型可能是AaBbCcDdEE。
10.某种植物的表现型有高茎和矮茎、紫花和白花,其中紫花和白花这对相对性状由两对等位基因控制,这两对等位基因中任意一对为隐性纯合则表现为白花。用纯合的高茎白花个体与纯合的矮茎白花个体杂交,F1表现为高茎紫花,F1自交产生F2,F2有4种表现型:高茎紫花162株,高茎白花126株,矮茎紫花54株,矮茎白花42株。请回答下列问题:
(1)根据此杂交实验结果可推测,株高受________对等位基因控制,依据是________________________________。在F2中矮茎紫花植株的基因型有________种,矮茎白花植株的基因型有________种。
(2)如果上述两对相对性状的基因自由组合,则理论上F2中高茎紫花、高茎白花、矮茎紫花和矮茎白花这4种表现型的数量比为________________。
解析:(1)根据F2中高茎∶矮茎≈3∶1,说明株高遗传遵循分离定律,该性状受1对等位基因控制,其中高茎(用D表示)为显性性状。控制花色的两对基因中任意一对为隐性纯合则表现为白花,即只有双显性个体(用A_B_表示)为紫花;根据F2中紫花∶白花约为9∶7可判断F1紫花的基因型为AaBb,所以在F2中矮茎紫花植株(ddA_B_)的基因型有4种,矮茎白花植株(ddA_bb、ddaaB_、ddaabb)的基因型共有5种。(2)若这两对相对性状的基因自由组合,则F1(DdAaBb)自交,F2中表现型及比例为(3高茎∶1矮茎)(9紫花∶7白花)=27高茎紫花∶21高茎白花∶9矮茎紫花∶7矮茎白花。
答案:(1)1 F2中高茎∶矮茎=3∶1 4 5
(2)27∶21∶9∶7
[类题通法]
判断控制性状等位基因对数的方法
(1)若F2中某性状所占分离比为(3/4)n,则由n对等位基因控制。
(2)若F2子代性状分离比之和为4n,则由n对等位基因控制。
课堂一刻钟
1.(2015·海南高考)下列叙述正确的是( )
A.孟德尔定律支持融合遗传的观点
B.孟德尔定律描述的过程发生在有丝分裂中
C.按照孟德尔定律,AaBbCcDd个体自交,子代基因型有16种
D.按照孟德尔定律,对AaBbCc个体进行测交,测交子代基因型有8种
易错探因——概念不清
融合遗传指的是亲本双方的性状在后代中都有体现,不表现一定的分离比。孟德尔定律否定了融合遗传的观点。考生会因对融合遗传的概念不理解而出错。
解析:选D 孟德尔定律的前提是遗传因子独立存在,不相互融合;孟德尔定律描述的过程发生在减数分裂中;按照孟德尔定律,AaBbCcDd个体自交,子代基因型有3×3×3×3=81(种);按照孟德尔定律,对AaBbCc个体进行测交,测交子代基因型有2×2×2=8(种)。
2.(2016·全国卷Ⅱ)某种植物的果皮有毛和无毛、果肉黄色和白色为两对相对性状,各由一对等位基因控制(前者用D、d表示,后者用F、f表示),且独立遗传。利用该种植物三种不同基因型的个体(有毛白肉A、无毛黄肉B、无毛黄肉C)进行杂交,实验结果如下:
回答下列问题:
(1)果皮有毛和无毛这对相对性状中的显性性状为________,果肉黄色和白色这对相对性状中的显性性状为________。
(2)有毛白肉A、无毛黄肉B和无毛黄肉C的基因型依次为________________________。
(3)若无毛黄肉B自交,理论上,下一代的表现型及比例为________________________。
(4)若实验3中的子代自交,理论上,下一代的表现型及比例为____________________。
(5)实验2中得到的子代无毛黄肉的基因型有________________。
满分必备——答题规范
只有根据题目要求准确写出表现型,同时说明性状分离比才能得满分。如果不能根据要求错答为基因型及比例或答题不全面都会导致失分。
解析:(1)由实验3有毛白肉A与无毛黄肉C杂交的子代都是有毛黄肉,可判断果皮有毛对无毛为显性性状,果肉黄色对白色为显性性状。(2)依据性状与基因的显隐性对应关系,可确定有毛白肉A的基因型是D_ff,无毛黄肉B的基因型是ddF_,因有毛白肉A和无毛黄肉B的子代果皮都表现为有毛,则有毛白肉A的基因型是DDff;又因有毛白肉A和无毛黄肉B的子代黄肉∶白肉为1∶1,则无毛黄肉B的基因型是ddFf;由有毛白肉A(DDff)与无毛黄肉C(ddF_)的子代全部为有毛黄肉可以推测,无毛黄肉C的基因型为ddFF。(3)无毛黄肉B(ddFf)自交后代的基因型为ddFF∶ddFf∶ddff=1∶2∶1,故后代表现型及比例为无毛黄肉∶无毛白肉=3∶1。(4)实验3中亲代的基因型是DDff和ddFF,子代为有毛黄肉,基因型为DdFf,其自交后代表现型为有毛黄肉(D_F_)∶有毛白肉(D_ff)∶无毛黄肉(ddF_)∶无毛白肉(ddff)=9∶3∶3∶1。(5)实验2中无毛黄肉B(ddFf)与无毛黄肉C(ddFF)杂交,子代无毛黄肉的基因型为ddFF和ddFf。
答案:(1)有毛 黄肉 (2)DDff、ddFf、ddFF (3)无毛黄肉∶无毛白肉=3∶1 (4)有毛黄肉∶有毛白肉∶无毛黄肉∶无毛白肉=9∶3∶3∶1 (5)ddFF、ddFf
3.(2018·全国卷Ⅰ)果蝇体细胞有4对染色体,其中2、3、4号为常染色体。已知控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上。某小组用一只无眼灰体长翅雌蝇与一只有眼灰体长翅雄蝇杂交,杂交子代的表现型及其比例如下:
眼
性别
灰体长翅∶灰体残翅∶黑檀体长翅∶黑檀体残翅
1/2有眼
1/2雌
9∶3∶3∶1
1/2雄
9∶3∶3∶1
1/2无眼
1/2雌
9∶3∶3∶1
1/2雄
9∶3∶3∶1
回答下列问题:
(1)根据杂交结果,________(填“能”或“不能”)判断控制果蝇有眼/无眼性状的基因是位于X染色体还是常染色体上。若控制有眼/无眼性状的基因位于X染色体上,根据上述亲本杂交组合和杂交结果判断,显性性状是________,判断依据是___________________
________________________________________________________________________。
(2)若控制有眼/无眼性状的基因位于常染色体上,请用上表中杂交子代果蝇为材料设计一个杂交实验来确定无眼性状的显隐性(要求:写出杂交组合和预期结果)。
(3)若控制有眼/无眼性状的基因位于4号染色体上,用灰体长翅有眼纯合体和黑檀体残翅无眼纯合体果蝇杂交,F1相互交配后,F2中雌雄均有________种表现型,其中黑檀体长翅无眼所占比例为3/64时,则说明无眼性状为________(填“显性”或“隐性”)。
失分提醒——审题要细
在设计实验时,实验材料只能选取表中杂交子代果蝇,不能自选材料,否则就会造成不必要的失分,在解答遗传类实验设计题时,要注意材料的选择。
解析:(1)控制果蝇有眼/无眼性状的基因无论是位于X染色体还是常染色体上,两亲本杂交,子代中雌雄个体都可能会出现数量相同的有眼和无眼个体,因此不能根据表中给出的杂交结果判断控制有眼/无眼性状基因的位置。若控制有眼/无眼性状的基因位于X染色体上,只有当无眼为显性性状时,子代雌雄个体中才都会出现有眼和无眼性状的分离。(2)若控制无眼/有眼性状的基因位于常染色体上,杂交子代无眼∶有眼=1∶1,则说明亲本为显性杂合体和隐性纯合体测交,根据测交结果,子代两种性状中,一种为显性杂合体,一种为隐性纯合体,所以可选择均为无眼的雌雄个体进行杂交,观察子代的性状表现,若子代中无眼∶有眼=3∶1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状。(3)由题意知,控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上,控制有眼/无眼性状的基因位于4号染色体上,它们的遗传符合自由组合定律。现将具有三对相对性状的纯合亲本杂交,F1为杂合体(假设基因型为AaBbDd),F1相互交配后,F2表现型有2×2×2=8(种)。根据表格中的性状分离比9∶3∶3∶1可知,黑檀体为隐性性状,长翅为显性性状,若子代黑檀体(1/4)长翅(3/4)无眼(?)的概率为3/64,则无眼的概率为1/4,无眼为隐性性状。
答案:(1)不能 无眼 只有当无眼为显性时,子代雌雄个体中才都会出现有眼与无眼性状的分离 (2)杂交组合:无眼×无眼 预期结果:若子代中无眼∶有眼=3∶1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状 (3)8 隐性
4.(2017·海南高考)果蝇有4对染色体(Ⅰ~Ⅳ号,其中Ⅰ号为性染色体)。纯合体野生型果蝇表现为灰体、长翅、直刚毛,从该野生型群体中分别得到了甲、乙、丙三种单基因隐性突变的纯合体果蝇,其特点如表所示。
表现型
表现型特征
基因型
基因所在染色体
甲
黑檀体
体呈乌木色、黑亮
ee
Ⅲ
乙
黑体
体呈深黑色
bb
Ⅱ
丙
残翅
翅退化,部分残留
vgvg
Ⅱ
某小组用果蝇进行杂交实验,探究性状的遗传规律。回答下列问题:
(1)用乙果蝇与丙果蝇杂交,F1的表现型是________;F1雌雄交配得到的F2不符合9∶3∶3∶1的表现型分离比,其原因是__________________________________________________。
(2)用甲果蝇与乙果蝇杂交,F1的基因型为________、表现型为________,F1雌雄交配得到的F2中果蝇体色性状________(填“会”或“不会”)发生分离。
(3)该小组又从乙果蝇种群中得到一只表现型为焦刚毛、黑体的雄蝇,与一只直刚毛灰体雌蝇杂交后,子一代雌雄交配得到的子二代的表现型及其比例为直刚毛灰体♀∶直刚毛黑体♀∶直刚毛灰体♂∶直刚毛黑体♂∶焦刚毛灰体♂∶焦刚毛黑体♂=6∶2∶3∶1∶3
∶1,则雌雄亲本的基因型分别为_____________(控制刚毛性状的基因用A/a表示)。
破题障碍——能力欠缺,不会推理
此小题要根据子代的性状表现与伴性遗传的特点进行基因定位。由题中信息可知,子二代雄蝇:直刚毛∶焦刚毛=(3+1)∶(3+1)=1∶1,雌蝇:直刚毛∶焦刚毛=8∶0=1∶0,表明A和a基因位于X染色体。子二代雌蝇都是直刚毛,表明直刚毛是显性性状,子一代雄蝇为XAY,雌蝇为XAXa,亲本为XAXA×XaY。关于灰身和黑身,子二代雄蝇:灰身∶黑身=(3+3)∶(1+1)=3∶1,雌蝇:灰身∶黑身=6∶2=3∶1,故B和b基因位于常染色体,子一代为Bb×Bb。由以上分析可得出雌雄亲本的基因型。
解析:(1)根据表格分析,甲为eeBBVgVg,乙为EEbbVgVg,丙为EEBBvgvg。乙果蝇与丙果蝇杂交,子代为EEBbVgvg,即灰体长翅。F1雌雄交配,由于BbVgvg均位于Ⅱ号染色体上,不能进行自由组合,故得到的F2不符合9∶3∶3∶1的表现型分离比。(2)甲果蝇与乙果蝇杂交,即eeBBVgVg×EEbbVgVg,F1的基因型为EeBbVgVg,表现型为灰体。F1雌雄交配,只看EeBb这两对等位基因,即EeBb×EeBb,F1为9E_B_(灰体)∶3E_bb(黑体)∶3eeB_(黑檀体)∶1eebb,发生性状分离。(3)子二代雄蝇:直刚毛∶焦刚毛=(3+1)∶(3+1)=1∶1,雌蝇:直刚毛∶焦刚毛=8∶0=1∶0,表明A和a基因位于X染色体。子二代雌蝇都是直刚毛,表明直刚毛是显性性状,子一代雄蝇为XAY,雌蝇为XAXa,亲本为XAXA×XaY。关于灰身和黑身,子二代雄蝇:灰身∶黑身=(3+3)∶(1+1)=3∶1,雌蝇:灰身∶黑身=6∶2=3∶1,故B和b基因位于常染色体,子一代为Bb×Bb。综上所述,亲本为XAXABB、XaYbb。
答案:(1)灰体长翅膀 两对等位基因均位于Ⅱ号染色体上,不能进行自由组合 (2)EeBb 灰体 会
(3)XAXABB、XaYbb
[学情考情·了然于胸]
一、明考情·知能力——找准努力方向
考查知识
1.自由组合定律与分离定律的关系。
2.亲子代基因型、表现型推导和相应比例计算的问题。
3.性状显隐性的判断类型和方法。
考查能力
1.推理能力:主要考查假说-演绎法和科学思维在遗传类试题中的应用。
2.迁移应用能力:综合考查遗传规律和伴性遗传的知识,借此考查知识的迁移应用能力和综合能力。
二、记要点·背术语——汇总本节重点
1.自由组合定律
(1)具有两对相对性状的纯种豌豆杂交,F2出现9种基因型、4种表现型,表现型的比例是9∶3∶3∶1。
(2)生物个体的基因型相同,表现型不一定相同;表现型相同,基因型也不一定相同。
(3)F1产生配子时,等位基因分离,非同源染色体上的非等位基因可以自由组合,产生比例相等的4种配子。
2.分离定律与自由组合定律的关系
(1)基因的分离定律和自由组合定律,同时发生在减数第一次分裂后期,分别由同源染色体的分离和非同源染色体的自由组合所引起。
(2)分离定律和自由组合定律是真核生物细胞核基因在有性生殖中的传递规律。分离定律是自由组合定律的基础。
[课下达标检测]
一、选择题
1.下列有关基因分离定律和基因自由组合定律的说法,正确的是( )
A.一对相对性状的遗传一定遵循基因的分离定律而不遵循自由组合定律
B.分离定律发生在配子产生过程中,自由组合定律发生在配子随机结合过程中
C.多对等位基因遗传时,在等位基因分离的同时,非等位基因自由组合
D.若符合自由组合定律,双杂合子自交后代不一定出现9∶3∶3∶1的性状分离比
解析:选D 如果一对相对性状由多对非同源染色体上的等位基因控制,则遵循自由组合定律;自由组合定律也发生在减数分裂形成配子的过程中;多对等位基因如果不位于非同源染色体上,则不遵循自由组合定律;如果双杂合子的两对等位基因之间存在互作关系或具某些基因型的个体致死时,则可能不符合9∶3∶3∶1的性状分离比。
2.(2019·安阳校级模拟)将两株植物杂交,子代植株的性状为:37株红果叶片上有短毛,19株红果叶片无毛,18株红果叶片上有长毛,13株黄果叶片上有短毛,7株黄果叶片上有长毛,6株黄果叶片无毛。下列叙述错误的是( )
A.果实红色对黄色为显性性状
B.若只考虑叶毛性状,则无毛个体是纯合体
C.两亲本植株都是杂合体
D.两亲本的表现型是红果长毛
解析:选D 根据子代红果与黄果分离比为(37+19+18)∶(13+7+6)≈3∶1,说明果实红色对黄色为显性性状。就叶毛来说,子代短毛∶无毛∶长毛=2∶1∶1,说明其基因型为Bb∶BB∶bb=2∶1∶1,所以无毛与长毛都是纯合体。根据亲本杂交后代都发生了性状分离,说明两株亲本植株都是杂合体。根据子代红果与黄果分离比为(37+19+18)∶(13+7+6)≈3∶1,说明此对性状的双亲均表现为红果;根据子代短毛∶无毛∶长毛=(37+13)∶(19+6)∶(18+7)=2∶1∶1,说明此对性状的双亲均表现为短毛,因此两亲本的表现型都是红果短毛。
3.果蝇的灰身(A)与黑身(a)、大脉翅(B)与小脉翅(b)是两对相对性状,相关基因位于常染色体上且独立遗传。灰身大脉翅的雌蝇和灰身小脉翅的雄蝇杂交,子代中47只为灰身大脉翅,49只为灰身小脉翅,17只为黑身大脉翅,15只为黑身小脉翅。下列说法错误的是( )
A.亲本中雌雄果蝇的基因型分别为AaBb和Aabb
B.亲本雌蝇产生卵的基因组成种类数为4种
C.子代中表现型为灰身大脉翅个体的基因型为AaBb
D.子代中体色和翅型的表现型比例分别为3∶1和1∶1
解析:选C 由题中数据可知子代中灰身∶黑身=(47+49)∶(17+15)=3∶1,可推知亲本基因型是Aa和Aa;大脉翅∶小脉翅=(47+17)∶(49+15)=1∶1,可推知亲本基因型是Bb和bb,所以亲本灰身大脉翅雌蝇基因型是AaBb,灰身小脉翅雄蝇基因型是Aabb,A项正确;由A项可知亲本灰身大脉翅雌蝇基因型是AaBb,其减数分裂产生的卵细胞基因型有AB、Ab、aB、ab 4种类型;由亲本基因型可知,子代中表现型为灰身大脉翅个体的基因型为AABb或AaBb;由A项分析可知D项正确。
4.(2019·保定一模)某植物正常株开两性花,且有只开雄花和只开雌花的两种突变型植株。取纯合雌株和纯合雄株杂交,F1全为正常株,F1自交所得F2中正常株∶雄株∶雌株=9∶3∶4。下列推测不合理的是( )
A.该植物的性别由位于非同源染色体上的两对基因决定
B.雌株和雄株两种突变型都是正常株隐性突变的结果
C.F1正常株测交后代表现为正常株∶雄株∶雌株=1∶1∶2
D.F2中纯合子测交后代表现为正常株∶雄株∶雌株=2∶1∶1
解析:选D 若基因用A、a和B、b表示,由题干可知,F1自交所得F2中正常株∶雄株∶雌株=9∶3∶4=9∶3∶(3+1),则F1基因型为AaBb,双亲为AAbb和aaBB,符合基因的自由组合定律;F1正常株测交后代为AaBb∶Aabb∶aaBb∶aabb=1∶1∶1∶1,表现型为正常株∶雄株∶雌株=1∶1∶2;F2中纯合子有AABB、AAbb、aaBB、aabb,测交后代分别为AaBb、Aabb、aaBb、aabb,表现型为正常株∶雄株∶雌株=1∶1∶2。
5.在孟德尔两对相对性状的杂交实验中,用纯合的黄色圆粒和绿色皱粒豌豆作亲本杂交得F1,F1全为黄色圆粒,F1自交得F2。在F2中,①用绿色皱粒人工传粉给黄色圆粒豌豆,②用绿色圆粒人工传粉给黄色圆粒豌豆,③让黄色圆粒自交,三种情况独立进行实验,则子代的表现型比例分别为( )
A.①4∶2∶2∶1 ②15∶8∶3∶1 ③64∶8∶8∶1
B.①3∶3∶1∶1 ②4∶2∶2∶1 ③25∶5∶5∶1
C.①1∶1∶1∶1 ②6∶3∶2∶1 ③16∶8∶2∶1
D.①4∶2∶2∶1 ②16∶8∶2∶1 ③25∶5∶5∶1
解析:选D 用纯合的黄色圆粒和绿色皱粒豌豆作亲本杂交得F1,F1全为黄色圆粒,可见黄色、圆粒均为显性性状。若用A表示黄色基因,B表示圆粒基因,则F2中黄色圆粒豌豆基因型有4种,AABB∶AaBb∶AaBB∶AABb=1∶4∶2∶2,减数分裂产生配子及其比例为AB∶Ab∶aB∶ab=4∶2∶2∶1,则①用绿色皱粒人工传粉给黄色圆粒豌豆,②用绿色圆粒人工传粉给黄色圆粒豌豆,③让黄色圆粒自交,三种情况独立进行实验,子代的表现型比例分别为①4∶2∶2∶1;②16∶8∶2∶1;③25∶5∶5∶1。
6.某植物叶形的宽叶和窄叶是一对相对性状,用纯合的宽叶植株与窄叶植株进行杂交,如下表(相关基因用A、a;B、b;C、c……表示)。下列相关叙述错误的是( )
母本
父本
子一代
子二代
杂交组合一
宽叶
窄叶
宽叶
宽叶∶窄叶=3∶1
杂交组合二
宽叶
窄叶
宽叶
宽叶∶窄叶=15∶1
杂交组合三
宽叶
窄叶
宽叶
宽叶∶窄叶=63∶1
A.该植物的叶形至少受三对等位基因控制
B.只要含有显性基因,该植株的表现型即为宽叶
C.杂交组合一亲本的基因型可能是AABBcc、aaBBcc
D.杂交组合三的子二代宽叶植株的基因型有26种
解析:选C 由表格信息可知,宽叶植株与窄叶植株杂交,子一代都是宽叶,说明宽叶是显性性状。杂交组合一,子二代窄叶植株所占的比例是1/4,说明符合一对杂合子自交实验结果;杂交组合二,子二代窄叶植株所占的比例是1/16,说明符合两对杂合子自交实验结果;杂交组合三,子二代窄叶植株所占的比例是1/64,说明符合三对杂合子自交实验结果,因此该植物的宽叶和窄叶性状至少由三对等位基因控制,且三对等位基因在遗传过程中遵循自由组合定律,隐性纯合子表现为窄叶,其他都表现为宽叶。若杂交组合一的亲本为AABBcc、aaBBcc,则F1为AaBBcc有一对显性基因纯合,子二代应全表现为宽叶。杂交组合三,子一代的基因型是AaBbCc,子二代的基因型有3×3×3=27(种),其中基因型为aabbcc的植株表现为窄叶,因此杂交组合三的子二代宽叶植株的基因型有26种。
7.柑橘的果皮色泽同时受多对等位基因控制(如A、a;B、b;C、c……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_……)为红色,当个体的基因型中每对等位基因都不含显性基因时(即aabbcc……)为黄色,否则为橙色。现有三株柑橘进行如下甲、乙两组杂交实验:
实验甲:红色×黄色→红色∶橙色∶黄色=1∶6∶1
实验乙:橙色×红色→红色∶橙色∶黄色=3∶12∶1
据此分析错误的是( )
A.果皮的色泽受3对等位基因的控制
B.实验甲亲、子代中红色植株基因型相同
C.实验乙橙色亲本有4种可能的基因型
D.实验乙的子代中,橙色个体有9种基因型
解析:选C 依题意和实验甲的结果“子代红色、黄色分别占1/8、1/8”可推知:果皮的色泽受3对等位基因的控制,实验甲亲、子代红色植株基因型为AaBbCc,亲代黄色植株的基因型为aabbcc;实验乙的子代中,红色、橙色、黄色分别占3/16、3/4、1/16,说明相应的橙色亲本有3种可能的基因型:Aabbcc、aaBbcc、aabbCc;实验乙的子代中,共有12种基因型,其中红色的有2种,黄色的有1种,则橙色个体有9种基因型。
8.(2019·黔东南四校模拟)凤仙花的花瓣有单瓣和重瓣两种,由一对等位基因控制,且单瓣对重瓣为显性,在开花时含有显性基因的精子不育而含隐性基因的精子可育,卵细胞不论含显性还是隐性基因都可育。现取自然情况下多株单瓣凤仙花自交得F1,则对F1中单瓣与重瓣的比值分析正确的是( )
A.单瓣与重瓣的比值为3∶1
B.单瓣与重瓣的比值为1∶1
C.单瓣与重瓣的比值为2∶1
D.单瓣与重瓣的比值无规律
解析:选B 设相关基因用A、a表示。由题意可知,由于无法产生含A的精子,故单瓣凤仙花的基因型为Aa,多株单瓣凤仙花自交得F1,其中雄性亲本只能产生a一种精子,雌性亲本可产生A和a两种卵细胞,故后代基因型为1Aa、1aa,表现型比例为单瓣与重瓣的比值为1∶1。
9.某种动物的眼色由两对独立遗传的等位基因(A、a和B、b)控制,具体控制关系如图。下列相关叙述正确的是( )
A.A基因正常表达时,以任一链为模板转录和翻译产生酶A
B.B基因上可结合多个核糖体,以提高酶B的合成效率
C.该动物群体中无色眼的基因型只有1种,猩红色眼对应的基因型有4种
D.若一对无色眼亲本所形成的受精卵中基因a突然变成了基因A,或基因b突然变成了基因B,则发育成的子代为深红色眼
解析:选C A基因正常表达时,以非编码链为模板转录形成mRNA,以mRNA为模板翻译产生酶A;以B基因的一条链为模板,转录出的mRNA可结合多个核糖体,以提高酶B的合成效率;分析图示可知:无色眼没有酶A和酶B,为无色底物,缺乏A基因和B基因,基因型只有aabb这1种,猩红色眼有A基因控制合成的酶A或B基因控制合成的酶B,因此对应的基因型有4种,分别为AAbb、Aabb、aaBB、aaBb;若一对无色眼亲本(aabb)所形成的受精卵中基因a或b发生突变,发育成的子代的基因型为Aabb或aaBb,表现为猩红色眼。
10.果蝇的长翅和残翅由一对等位基因控制,灰身和黑身由另一对等位基因控制。一对长翅灰身果蝇杂交的子代中出现了残翅雌果蝇,雄果蝇中的黑身个体占1/4。不考虑变异的情况下,下列推理合理的是( )
A.两对基因位于同一对染色体上
B.两对基因都位于常染色体上
C.子代不会出现残翅黑身雌果蝇
D.亲本雌蝇只含一种隐性基因
解析:选B 由亲代长翅灰身果蝇杂交产生的子代中出现残翅和黑身果蝇判断,长翅对残翅为显性,灰身对黑身为显性。子代中出现了残翅雌果蝇,说明控制该性状基因位于常染色体上(若位于X染色体上,则雌果蝇应该全为长翅);雄果蝇中的黑身个体占1/4,说明控制该性状基因位于常染色体上(若位于X染色体上,则雄果蝇中的黑身个体占1/2),所以两个亲本都为杂合子,含有两个隐性基因;若两对基因位于一对同源染色体上或者两对同源染色体上,则子代都能出现上述结果;若亲本中两对基因位于两对同源染色体上,或者两个显性基因位于同源染色体的一条染色体上,两个隐性基因位于另一条染色体上,子代都可能出现残翅黑身雌果蝇。
11.(2019·唐山调研)某哺乳动物棒状尾(A)对正常尾(a)为显性;黄色毛(Y)对白色毛(y)为显性,但是雌性个体无论毛色基因型如何,均表现为白色毛。两对基因均位于常染色体上并遵循基因的自由组合定律。下列叙述正确的是( )
A.A与a、Y与y两对等位基因位于同一对同源染色体上
B.若想依据子代的表现型判断出性别,能满足要求的交配组合有两组
C.基因型为Yy的雌雄个体杂交,子代黄色毛和白色毛的比例为3∶5
D.若黄色与白色两个体交配,生出一只白色雄性个体,则母本的基因型是Yy
解析:选C 由控制两对性状的基因遵循自由组合定律可知,这两对基因分别位于两对同源染色体上;若想依据子代的表现型判断出性别,YY♂×yy♀、YY♂×Yy♀、YY♂×YY♀三组杂交组合都满足要求;基因型为Yy的雌雄个体杂交,F1基因型为1YY、2Yy、1yy,雄性中黄色毛∶白色毛=3∶1,雌性全为白色毛,故子代黄色毛和白色毛的比例为3∶5;当亲本的杂交组合为♂Yy×♀yy时,也可生出白色雄性(yy)个体。
12.甲、乙、丙三种植物的花色遗传均受两对具有完全显隐性关系的等位基因控制,且两对等位基因独立遗传。白色前体物质在相关酶的催化下形成不同色素,使花瓣表现相应的颜色,不含色素的花瓣表现为白色。色素代谢途径如图。据图分析下列叙述错误的是( )
A.基因型为Aabb的甲植株开红色花,测交后代为红花∶白花≈1∶1
B.基因型为ccDD的乙种植株,由于缺少蓝色素D基因必定不能表达
C.基因型为EEFF的丙种植株中,E基因不能正常表达
D.基因型为EeFf的丙植株,自交后代为白花∶黄花≈13∶3
解析:选B 分析图示可知,在甲种植物中,A_B_、aaB_和A_bb均开红花,aabb开白花,因此基因型为Aabb的植株,测交后代为红花(Aabb)∶白花(aabb)≈1∶1;基因型为ccDD的乙种植株,由于缺少C基因而不能合成蓝色素,但D基因仍可表达;在丙植株中,E基因的表达离不开f基因的表达产物f酶的催化,因此基因型为EEFF的植株缺少f基因,E基因不能正常表达;基因型为EeFf的丙植株自交,产生的子一代的基因型及比例为E_F_∶E_ff∶eeF_∶eeff=9∶3∶3∶1,E_ff能合成黄色素,含F基因的植株抑制E基因的表达,只有E_ff的植株表现为黄花,所以白花∶黄花≈13∶3。
二、非选择题
13.某严格闭花受粉植物,其花色黄色(Y)对绿色(y)为显性,种子圆粒(R)对皱粒(r)为显性。有人用黄色圆粒和绿色圆粒的两亲本进行杂交,实验结果(F1)为897黄色圆粒∶902绿色圆粒∶298黄色皱粒∶305绿色皱粒,请回答以下问题:
(1)根据F1推测Y、y和R、r两对等位基因位于________(填“同源”或“非同源”)染色体上;两亲本的基因型为:黄色圆粒________,绿色圆粒________。
(2)让F1中所有绿色圆粒植株自然生长结实(假设结实率、成活率等均相同),理论上其F2的表现型及数量比为______________________________。
(3)该植物中,抗病和感病由另一对等位基因控制,但未知其显隐性关系。现分别有1株抗病(甲)和感病(乙)植株(甲、乙是否为纯合子未知),请利用以上植株,探究抗病和感病的显隐性关系,简要写出实验思路并对实验结果进行分析。________________________________________________________________________
________________________________________________________________________
________________________________________________________________________。
解析:(1)由题干可推出,F1中黄色(Y_)∶绿色(yy)≈1∶1,圆粒(R_)∶皱粒(rr)≈3∶1,所以亲本基因型为YyRr和yyRr。(2)让F1中所有绿色圆粒植株(1/3yyRR、2/3yyRr)自然生长结实,理论上F2的表现型及数量比为(1/3+2/3×1/4)yyRR∶(2/3×1/2)yyRr∶(2/3×1/4)yyrr=(1/2yyRR+1/3 yyRr)绿色圆粒∶1/6yyrr 绿色皱粒=5∶1。(3)判断显、隐性状的一般方法:①确定显隐性性状时首选自交,看其后代有无性状分离,若有则亲本的性状为显性性状。②其次,让具有相对性状的两亲本杂交,看后代的表现型,若后代表现一种亲本性状,则此性状为显性性状。③考虑各种情况,设定基因来探究后代的表现型是否符合题意来确定性状的显隐性。
答案:(1)非同源 YyRr yyRr
(2)绿色圆粒(或绿圆)∶绿色皱粒(或绿皱)=5∶1
(3)答案一:将抗病(甲)和感病(乙)植株进行自交,如果某植株后代出现性状分离,则该植株具有的性状(或表现型)为显性性状;如果自交后代都不出现性状分离,则将2株植株(或甲、乙)的自交后代进行杂交,杂交后代表现出来的性状(或表现型)即为显性性状
答案二:将抗病(甲)和感病(乙)植株进行杂交,如果后代只表现一种性状(或表现型),则该性状(或表现型)即为显性性状;如果出现两种性状(或表现型),则将杂交后代进行自交,出现性状分离的植株的性状(或表现型)即为显性性状
14.果蝇眼色由A、a和B、b两对位于常染色体上的等位基因控制,基因A控制色素形成,基因B决定红色,基因b决定粉色;当基因A不存在时,果蝇眼色表现为白色。为了研究这两对等位基因的分布情况,某科研小组进行了杂交实验,选取一对红眼(AaBb)雌雄个体进行交配,统计结果。据此回答下列问题(不考虑基因突变和交叉互换):
(1)如果子代表现型及比例为红色∶白色∶粉色=____________,则这两对等位基因的遗传符合自由组合定律,表现型为白眼的果蝇中,纯合子的基因型为____________。选择子代粉色眼雌雄个体自由交配,所产生后代的表现型及比例为____________。
(2)如果子代的表现型及比例为红∶粉∶白=2∶1∶1,则这两对等位基因的分布情况可以为________________________________________________________________________
________________________________________________________________________
________________________________________________________________________。
(3)若这两对等位基因的遗传符合自由组合定律,取亲本果蝇(AaBb)进行测交,则后代的表现型及比例为______________。
解析:(1)红眼(AaBb)雌雄个体进行相互交配,如果符合自由组合定律,则亲本能够产生四种等比例配子,雌雄配子随机结合后应该能够产生红色、白色、粉色三种表现型的个体,且比例为9∶4∶3。白眼果蝇的基因型为aaBb、aaBB、aabb,其中纯合子的基因型为aaBB、aabb。子代粉色眼果蝇的基因型为1/3AAbb、2/3Aabb,其自由交配所产生的后代表现型及比例为粉色∶白色=8∶1。(2)红眼(AaBb)雌雄个体进行相互交配,如果子代的表现型及比例为红∶粉∶白=2∶1∶1,说明这两对等位基因的遗传不符合自由组合定律,通过子代的表现型及比例可推知这两对等位基因位于一对常染色体上,具体分布情况有两种:一种情况是一只果蝇基因A与基因b在一条染色体上,基因a与基因B在一条染色体上,另一只果蝇基因A与基因B在一条染色体上,基因a与基因b在一条染色体上;另一种情况是两只果蝇均是基因A与基因b在一条染色体上,基因a与基因B在一条染色体上。(3)若这两对等位基因的遗传符合自由组合定律,取亲本果蝇(AaBb)与基因型为aabb的果蝇进行测交,后代表现型及比例为红色∶白色∶粉色=1∶2∶1。
答案:(1)9∶4∶3 aaBB、aabb 粉色∶白色=8∶1
(2)A、a和B、b位于一对常染色体上,且一只果蝇基因A与基因b在一条染色体上,基因a与基因B在一条染色体上;另一只果蝇基因A与基因B在一条染色体上,基因a与基因b在一条染色体上(或A、a和B、b位于一对常染色体上,且两只果蝇均是基因A与基因b在一条染色体上,基因a与基因B在一条染色体上)
(3)红色∶白色∶粉色=1∶2∶1
15.香豌豆有许多品种,花色不同。现有3个纯合品种:1个红花、2个白花(白A和白B)。科学家利用3个品种做杂交实验,结果如下:
实验1:白花A×红花,F1表现为红花,F2表现为红花305株,白花97株
实验2:白花B×红花,F1表现为红花,F2表现为红花268株,白花93株
实验3:白花A×白花B,F1表现为红花,F2表现为红花273株,白花206株
请回答:
(1)根据上述杂交实验结果可推测,________花为显性,香豌豆花色受________对等位基因控制,依据是________________________________________________________________________
________________________________________________________________________。
(2)为了验证上述结论,可将实验3得到的F2植株自交,单株收获F2中红花植株所结的种子,每株的所有种子单独种植在一起可得到一个株系,观察多个这样的株系,则理论上,在所有株系中有________的株系F3花色的表现型及其数量比为红∶白=3∶1。
(3)科学家继续研究发现,香豌豆红花和白花这对相对性状可受多对等位基因控制。某科学家在大量种植该红花品种时,偶然发现了1株纯合白花植株。假设该白花植株与红花品种也只有一对等位基因存在差异,若要通过杂交实验来确定该白花植株是一个新等位基因突变造成的,还是属于上述2个白花品种中的一个,则:
该实验的思路:______________________________________________________。
预期实验结果和结论:_________________________________________________
________________________________________________________________________
________________________________________________________________________。
解析:(1)根据实验1和2,白花×红花,F1全为红花可知,红花为显性性状。实验3中,F2中红色个体占全部个体的比例为9/16=(3/4)2,可判断花色涉及2对等位基因,且A_B_为红色,其余基因型为白色。(2)实验3得到的F2中红花植株基因型及概率:1/9AABB、2/9AABb、2/9AaBB、4/9AaBb,自交所产生的株系如下:
AABB自交,株系:AABB红
AABb自交,株系:AAB_红∶AAbb白=3∶1
AaBB自交,株系:A_BB红∶aaBB白=3∶1
AaBb自交,株系:A_B_红∶(A_bb、aaB_、aabb)白=9∶7
故株系红∶白=3∶1共占4/9。
(3)设红花基因型为AABBCC。白花A:aaBBCC 白花B为:AAbbCC。若该白花植株是新等位基因突变,与红花品种也只有一对等位基因存在差异,则为AABBcc。故其与上述2个白花品系杂交,后代全部为红花。若该白花植株是2个品系中的一个,则为aaBBCC或AAbbCC,其与2个白花品系杂交,其中会有一个组合出现子代全为白花的现象。
答案:(1)红 2 实验3中,F2中红色个体占全部个体的比例为9/16=(3/4)2,依据n对等位基因自由组合且完全显性时,F2中显性个体的比例是(3/4)n,可判断花色涉及2对等位基因 (2)4/9
(3)用该白花植株分别与白花A、B杂交,观察子代花色
在2个杂交组合中,如果子代全部为红花,说明该白花植株是新等位基因突变造成的;如果1个组合的子代为红花,1个组合的子代为白花,说明该白花植株属于这2个白花品系之一
知识体系——定内容
核心素养——定能力
生命观念
通过对基因的自由组合定律的实质分析,从细胞水平阐述生命的延续性,建立起进化与适应的观点
科学思维
通过基因分离定律与自由组合定律的关系解读,研究自由组合定律的解题规律及方法,培养归纳与概括、演绎与推理及逻辑分析能力
科学探究
通过个体基因型的探究与自由组合定律的验证实验,掌握实验操作的方法,培养实验设计及结果分析的能力
考点一 两对相对性状杂交实验与自由组合定律[重难深化类]
1.假说—演绎过程
2.自由组合定律
3.孟德尔获得成功的原因
[基础自测]
1.判断下列叙述的正误
(1)在F2中重组类型占10/16,亲本类型占6/16(×)
(2)F1产生基因型YR的卵细胞和基因型YR的精子数量之比为1∶1(×)
(3)在F2的黄色皱粒豌豆中纯合子所占比例为1/3(√)
(4)自由组合定律发生于减数第一次分裂中期(×)
(5)自由组合定律的实质是等位基因分离的同时,非等位基因自由组合(×)
(6)运用统计学的方法分析结果是孟德尔获得成功的原因之一(√)
2.选择填空
下面为某同学总结的有丝分裂、减数分裂和受精作用的联系图,有些联系是错误的,其中联系错误的是________。(填图中序号)
提示:⑤⑧ 有丝分裂后期姐妹染色单体分离,①正确;减数第一次分裂后期会发生同源染色体分离,非同源染色体自由组合,②和③正确;受精作用时同源染色体汇合,④正确;有丝分裂中姐妹染色单体分离不会导致等位基因分离,⑤错误;同源染色体的分离会导致等位基因分离,⑥正确;非同源染色体自由组合会导致非同源染色体上非等位基因自由组合,⑦正确;非同源染色体上的非等位基因自由组合发生在减数第一次分裂,⑧错误。
3.学透教材、理清原因、规范答题用语专练
下面两图分别是具有一对和两对等位基因的个体杂交的遗传图解。已知同一个体产生的各种配子类型数量相等。请思考并回答:
(1)基因分离定律的实质体现在图中的________,基因自由组合定律的实质体现在图中的________。(均填序号)
(2)③⑥过程表示__________,这一过程中子代遗传物质的来源情况如何?________________________________________________________________________
________________________________________________________________________。
(3)如果A和a、B和b(完全显性)各控制一对相对性状,并且彼此间对性状的控制互不影响,则图2中所产生的子代中表现型有________种,它们的比例为____________。
(4)图中哪些过程可以发生基因重组?________。
答案:(1)①② ④⑤ (2)受精作用 细胞核中遗传物质一半来自父方,另一半来自母方,细胞质中遗传物质几乎全部来自母方 (3)4 9∶3∶3∶1 (4)④⑤
4.据图判断,下列①~④中可遵循基因自由组合定律的是________。
答案:②③④
1.用分离定律分析两对相对性状的杂交实验
F2
1YY(黄) 2Yy(黄)
1yy(绿)
1RR(圆)2Rr(圆)
1YYRR、2YyRR、2YYRr、4YyRr (黄圆)
1yyRR、2yyRr(绿圆)
1rr(皱)
1YYrr、2Yyrr(黄皱)
1yyrr(绿皱)
2.F2基因型和表现型的种类及比例
(1)
(2)
3.基因分离定律与自由组合定律的关系及相关比例
[对点落实]
1.(2019·金山区一模)在孟德尔两对相对性状杂交实验中,F1黄色圆粒豌豆(YyRr)自交产生F2。下列表述正确的是( )
A.F1产生4种精子,比例为1∶1∶1∶1
B.F1可产生基因型为Yy的卵细胞
C.基因自由组合定律的实质指F1产生的雌雄配子随机结合
D.F2中黄色圆粒豌豆约占3/16
解析:选A F1(YyRr)产生4种配子,配子类型及比例为YR∶Yr∶yR∶yr=1∶1∶1∶1;Y和y属于等位基因,在产生配子的过程中应该分离,产生的配子中只有其中的一个;基因自由组合定律是指F1在减数分裂过程中,同源染色体分离,非同源染色体上的非等位基因自由组合;F2中黄色圆粒豌豆为双显性性状(Y_R_)约占9/16。
2.如图为某植株自交产生后代的过程示意图,下列描述错误的是( )
A.A、a与B、b的自由组合发生在①过程
B.②过程发生雌、雄配子的随机结合
C.M、N、P分别代表16、9、3
D.该植株测交后代性状分离比为1∶1∶1∶1
解析:选D ①过程为减数分裂产生配子的过程,A、a与B、b的自由组合发生在减数第一次分裂后期;②过程为受精作用,发生雌、雄配子的随机结合;①过程产生4种配子,则雌、雄配子的随机结合的方式是4×4=16(种),基因型=3×3=9(种),表现型为3种;根据F2的3种表现型比例为12∶3∶1,得出A_B_个体表现型与A_bb个体或aaB_个体相同,该植株测交后代基因型比例为1(AaBb)∶1(Aabb)∶1(aaBb)∶1(aabb),则表现型的比例为2∶1∶1。
3.某动物细胞中位于常染色体上的基因A、B、C分别对a、b、c为显性。用两个纯合个体杂交得F1,F1测交结果为aabbcc∶AaBbCc∶aaBbcc∶AabbCc=1∶1∶1∶1。则F1体细胞中三对基因在染色体上的位置是( )
解析:选B F1测交,即F1×aabbcc,其中aabbcc个体只能产生abc一种配子,而测交结果为aabbcc∶AaBbCc∶aaBbcc∶AabbCc=1∶1∶1∶1,说明F1产生的配子基因型分别为abc、ABC、aBc、AbC,其中a和c、A和C总在一起,说明A和a、C和c两对等位基因位于同一对同源染色体上,且A和C在同一条染色体上,a和c在同一条染色体上。
[易错提醒]
澄清自由组合定律的两点易误
(1)发生时期:自由组合发生于配子形成(MⅠ后期)过程中,而不是受精作用过程中。
(2)组合基因:能发生自由组合的是位于非同源染色体上的非等位基因,而不仅指“非等位基因”,因为同源染色体上也有非等位基因。
自由组合定律的实验验证方法
自交法
F1
如果后代性状分离比符合9∶3∶3∶1或(3∶1)n(n≥3),则控制两对或多对相对性状的基因位于两对或多对同源染色体上,符合自由组合定律,反之则不符合
测交法
如果测交后代性状分离比符合1∶1∶1∶1或(1∶1)n(n≥3),则控制两对或多对相对性状的基因位于两对或多对同源染色体上,符合自由组合定律,反之则不符合
配子法
F1减数分裂
产生数量相等的2n(n为等位基因对数)种配子,则符合自由组合定律
[对点落实]
4.(2019·河南六市联考)某单子叶植物非糯性(A)对糯性(a)为显性,叶片抗病(T)对易染病(t)为显性,花粉粒长形(D)对圆形(d)为显性,三对等位基因分别位于三对同源染色体上,非糯性花粉遇碘液变蓝,糯性花粉遇碘液为棕色。现有四种纯合子,其基因型分别为:①AATTdd,②AAttDD,③AAttdd,④aattdd,下列说法正确的是( )
A.若采用花粉鉴定法验证基因的分离定律,应选择亲本①和③杂交
B.若采用花粉鉴定法验证基因的自由组合定律,可以选择亲本①和②杂交
C.若培育糯性抗病优良品种,应选用①和④杂交
D.若将①和④杂交所得F1的花粉用碘液染色,可观察到比例为1∶1∶1∶1的四种花粉粒
解析:选C 根据题意,若采用花粉鉴定法验证基因的分离定律,应选择亲本①×④或②×④或③×④,然后再自交;若采用花粉鉴定法验证基因的自由组合定律,应选择亲本②×④;若培育糯性抗病优良品种,应选用①和④杂交;将①和④杂交所得F1的基因型为AaTtdd,由于只有非糯性和糯性花粉遇碘液出现颜色变化,因此F1花粉用碘液染色,可观察到比例为1∶1的两种花粉粒。
5.(2018·全国卷Ⅲ)某小组利用某二倍体自花传粉植物进行两组杂交实验,杂交涉及的四对相对性状分别是:红果(红)与黄果(黄)、子房二室(二)与多室(多)、圆形果(圆)与长形果(长)、单一花序(单)与复状花序(复)。实验数据如下表。
组别
杂交组合
F1表现型
F2表现型及个体数
甲
红二×黄多
红二
450红二、160红多、150黄二、50黄多
红多×黄二
红二
460红二、150红多、160黄二、50黄多
乙
圆单×长复
圆单
660圆单、90圆复、90长单、160长复
圆复×长单
圆单
510圆单、240圆复、240长单、10长复
回答下列问题:
(1)根据表中数据可得出的结论是:控制甲组两对相对性状的基因位于________________上,依据是____________________________________________;控制乙组两对相对性状的基因位于________(填“一对”或“两对”)同源染色体上,依据是________________________________________________________________________
________________________________________________________________________。
(2)某同学若用“长复”分别与乙组的两个F1进行杂交,结合表中数据分析,其子代的统计结果不符合________的比例。
解析:(1)由于表中数据显示,甲组F2的表现型及比例为红二∶红多∶黄二∶黄多≈ 9∶3∶3∶1,该比例符合基因的自由组合定律的性状分离比,所以控制甲组两对相对性状的基因位于非同源染色体上。乙组F2的表现型中,每对相对性状表现型的比例都符合3∶1,即圆形果∶长形果=3∶1,单一花序∶复状花序=3∶1,而圆单∶圆复∶长单∶长复不符合9∶3∶3∶1的性状分离比,其遗传不符合自由组合定律,所以控制乙组两对相对性状的基因位于一对同源染色体上。(2)根据乙组的相对性状表现型分离比可知,控制乙组两对相对性状的基因位于一对同源染色体上,所以用“长复(隐性纯合子)”分别与乙组的两个F1进行杂交,不会出现测交结果为1∶1∶1∶1的比例。
答案:(1)非同源染色体 F2中两对相对性状表现型的分离比符合9∶3∶3∶1 一对 F2中每对相对性状表现型的分离比都符合3∶1,而两对相对性状表现型的分离比不符合9∶3∶3∶1 (2)1∶1∶1∶1
6.(2013·全国卷)已知玉米子粒黄色(A)对白色(a)为显性,非糯(B)对糯(b)为显性,这两对性状自由组合。请选用适宜的纯合亲本进行一个杂交实验来验证:①子粒的黄色与白色的遗传符合分离定律;②子粒的非糯与糯的遗传符合分离定律;③以上两对性状的遗传符合自由组合定律。要求:写出遗传图解,并加以说明。
解析:根据题目要求“选择适宜纯合亲本”、“杂交实验”等关键词,可选择(纯合白非糯)aaBB和(纯合黄糯)AAbb或(纯合黄非糯)AABB和(纯合白糯)aabb作为亲本,杂交后F1均为AaBb(杂合黄非糯)。F1自交,若F2中黄粒(A_)∶白粒(aa)=3∶1,则说明子粒的黄色与白色的遗传符合分离定律,同理,若F2中非糯粒(B_)∶糯粒(bb)=3∶1,则说明子粒的非糯与糯的遗传符合基因分离定律。若F2中黄非糯粒∶黄糯粒∶白非糯粒∶白糯粒=9∶3∶3∶1,即A_B_∶A_bb∶aaB_∶aabb=9∶3∶3∶1,则说明以上两对性状的遗传符合自由组合定律。
答案:亲本 (纯合白非糯)aaBB×AAbb(纯合黄糯)
亲本或为: (纯合黄非糯)AABB×aabb(纯合白糯)
↓
F1 AaBb(杂合黄非糯)
↓
F2
F2子粒中:
①若黄粒(A_)∶白粒(aa)=3∶1,则验证该性状的遗传符合分离定律;
②若非糯粒(B_)∶糯粒(bb)=3∶1,则验证该性状的遗传符合分离定律;
③若黄非糯粒∶黄糯粒∶白非糯粒∶白糯粒=9∶3∶3∶1即:A_B_∶A_bb∶aaB_∶aabb=9∶3∶3∶1,则验证这两对性状的遗传符合自由组合定律。
考点二 自由组合定律的解题规律及方法[题点精析类]
题型一 “拆分法”求解自由组合定律计算问题
1.(2014·海南高考改编)基因型为AaBbDdEeGgHhKk的个体自交,假定这7对等位基因自由组合。
(1)1对等位基因杂合、6对等位基因纯合的个体出现的概率为________;
(2)3对等位基因杂合、4对等位基因纯合的个体出现的概率为________;
(3)5对等位基因杂合、2对等位基因纯合的个体出现的概率为________;
(4)7对等位基因纯合个体出现的概率与7对等位基因杂合个体出现的概率为________。
解析:基因型为AaBbDdEeGgHhKk个体自交,后代中每对等位基因自交子代中纯合子和杂合子的概率各占1/2,所以自交子代中1对杂合、6对纯合的个体有C=7种类型(利用数学排列组合方法进行分析),且每种类型出现的概率均为1/27=1/128,故此类个体出现的概率为C(1/2)7=7/128;同理,自交子代中3对杂合、4对纯合的个体占C(1/2)7=35/128;自交子代中5对杂合、2对纯合的个体有C(1/2)7=21/128;自交子代中7对等位基因纯合与7对等位基因杂合的个体出现的概率均为(1/2)7=1/128。
答案:(1)7/128 (2)35/128 (3)21/128 (4)1/128
[类题通法]
“拆分法”解答自由组合问题的一般方法
首先,将自由组合定律问题转化为若干个分离定律问题。在独立遗传的情况下,有几对等位基因就可分解为几组分离定律问题。如AaBb×Aabb,可分解为两组:Aa×Aa,Bb×bb。然后,按分离定律进行逐一分析。最后,将获得的结果进行综合,得到正确答案。举例如下:
问题举例
计算方法
AaBbCc×AabbCc,求其杂交后代可能的表现型种类数
可分解为三个分离定律:
Aa×Aa→后代有2种表现型(3A_∶1aa)
Bb×bb→后代有2种表现型(1Bb∶1bb)
Cc×Cc→后代有2种表现型(3C_∶1cc)
所以,AaBbCc×AabbCc的后代中有2×2×2=8种表现型
AaBbCc×AabbCc,后代中表现型同A_bbcc个体的概率计算
Aa×Aa Bb×bb Cc×Cc
↓ ↓ ↓
3/4(A_)×1/2(bb)×1/4(cc)=3/32
AaBbCc×AabbCc,求子代中不同于亲本的表现型(基因型)
不同于亲本的表现型=1-亲本的表现型=1-(A_B_C_+A_bbC_),不同于亲本的基因型=1-亲本的基因型=1-(AaBbCc+AabbCc)
题型二 “逆向组合法”推断亲本基因型问题
2.(2017·全国卷Ⅱ)若某哺乳动物毛色由3对位于常染色体上的、独立分配的等位基因决定,其中,A基因编码的酶可使黄色素转化为褐色素;B基因编码的酶可使该褐色素转化为黑色素;D基因的表达产物能完全抑制A基因的表达;相应的隐性等位基因a、b、d的表达产物没有上述功能。若用两个纯合黄色品种的动物作为亲本进行杂交,F1均为黄色,F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,则杂交亲本的组合是( )
A.AABBDD×aaBBdd,或AAbbDD×aabbdd
B.aaBBDD×aabbdd,或AAbbDD×aaBBDD
C.aabbDD×aabbdd,或AAbbDD×aabbdd
D.AAbbDD×aaBBdd,或AABBDD×aabbdd
解析:选D F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,总数为64,故F1中应有3对等位基因,且遵循自由组合定律,由此对各项进行逐项分析即可得出答案。A项,AABBDD×aaBBdd的F1中只有2对等位基因,AAbbDD×aabbdd的F1中也只有2对等位基因;B项,aaBBDD×aabbdd的F1中只有2对等位基因,AAbbDD×aaBBDD的F1中也只有2对等位基因;C项,aabbDD×aabbdd的F1中只有1对等位基因,且F1、F2都是黄色,AAbbDD×aabbdd的F1中只有2对等位基因。A、B、C中的亲本组合都不符合。D项,AAbbDD×aaBBdd或AABBDD×aabbdd的F1中均含有3对等位基因,F1均为黄色,F2中毛色表现型会出现黄∶褐∶黑=52∶3∶9的数量比,符合要求。
[类题通法]
“逆向组合法”推断亲本基因型的一般思路
(1)方法:将自由组合定律的性状分离比拆分成分离定律的分离比分别分析,再运用乘法原理进行逆向组合。
(2)题型示例:
①9∶3∶3∶1⇒(3∶1)(3∶1)⇒(Aa×Aa)(Bb×Bb);
②1∶1∶1∶1⇒(1∶1)(1∶1)⇒(Aa×aa)(Bb×bb);
③3∶3∶1∶1⇒(3∶1)(1∶1)⇒(Aa×Aa)(Bb×bb)或(Aa×aa)(Bb×Bb);
④3∶1⇒(3∶1)×1⇒(Aa×Aa)(BB×_ _)或(Aa×Aa)(bb×bb)或(AA×_ _)(Bb×Bb)或(aa×aa)(Bb×Bb)。
题型三 “十字交叉法”解答自由组合的概率计算问题
3.一个正常的女人与一个并指(Bb)的男人结婚,他们生了一个白化病且手指正常的孩子。若他们再生一个孩子:
(1)只患并指的概率是________。
(2)只患白化病的概率是________。
(3)既患白化病又患并指的男孩的概率是________。
(4)只患一种病的概率是________。
(5)患病的概率是________。
解析:由题意知,第1个孩子的基因型应为aabb,则该夫妇基因型应分别为妇:Aabb;夫:AaBb。依据该夫妇基因型可知,孩子中并指的概率应为1/2(非并指概率为1/2),白化病的概率应为1/4(非白化病概率应为3/4),则:(1)再生一个只患并指孩子的概率为:并指概率-并指又白化概率=1/2-1/2×1/4=3/8。(2)只患白化病的概率为:白化病概率-白化又并指的概率=1/4-1/2×1/4=1/8。(3)生一个既白化又并指的男孩的概率为:男孩出生率×白化病概率×并指概率=1/2×1/4×1/2=1/16。(4)后代只患一种病的概率为:并指概率×非白化病概率+白化病概率×非并指概率=1/2×3/4+1/4×1/2=1/2。(5)后代中患病的概率为:1-全正常(非并指、非白化)=1-1/2×3/4=5/8。
答案:(1)3/8 (2)1/8 (3)1/16 (4)1/2 (5)5/8
[类题通法]
用“十字交叉法”解答两病概率计算问题
(1)当两种遗传病之间具有“自由组合”关系时,各种患病情况的概率分析如下:
(2)根据序号所示进行相乘得出相应概率再进一步拓展如下表:
序号
类型
计算公式
①
同时患两病概率
mn
②
只患甲病概率
m(1-n)
③
只患乙病概率
n(1-m)
④
不患病概率
(1-m)(1-n)
拓展求解
患病概率
①+②+③或1-④
只患一种病概率
②+③或1-(①+④)
考点三 基因自由组合定律的遗传特例及有关实验探究[题点精析类]
一、基因自由组合现象的特殊分离比问题
1.妙用“合并同类型”巧解特殊分离比
(1)“和”为16的特殊分离比成因
①基因互作:
类型
F1(AaBb) 自
交后代比例
F1测交
后代比例
Ⅰ
存在一种显性基因时表现为同一性状,其余正常表现
9∶6∶1
1∶2∶1
Ⅱ
两种显性基因同时存在时,表现为一种性状,否则表现为另一种性状
9∶7
1∶3
Ⅲ
当某一对隐性基因成对存在时表现为双隐性状,其余正常表现
9∶3∶4
1∶1∶2
Ⅳ
只要存在显性基因就表现为一种性状,其余正常表现
15∶1
3∶1
②显性基因累加效应:
a.表现:
b.原因:A与B的作用效果相同,但显性基因越多,其效果越强。
(2)“和”小于16的特殊分离比成因
成因
后代比例
①
显性纯合致死
(AA、BB致死)
自交子代
AaBb∶Aabb∶aaBb∶aabb=4∶2∶2∶1,其余基因型个体致死
测交子代
AaBb∶Aabb∶aaBb∶aabb=1∶1∶1∶1
②
隐性纯合致死
(自交情况)
自交子代出现9∶3∶3(双隐性致死);自交子代出现9∶1(单隐性致死)
2.基因完全连锁遗传现象的分析
基因完全连锁(不考虑交叉互换)时,不符合基因的自由组合定律,其子代也呈现特定的性状分离比,如下图所示:
[题点全练]
题点(一) 基因互作与性状分离比9∶3∶3∶1的变式
1.(2016·全国卷Ⅲ)用某种高等植物的纯合红花植株与纯合白花植株进行杂交,F1全部表现为红花。若F1自交,得到的F2植株中,红花为272株,白花为212株;若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株。根据上述杂交实验结果推断,下列叙述正确的是( )
A.F2中白花植株都是纯合体
B.F2中红花植株的基因型有2种
C.控制红花与白花的基因在一对同源染色体上
D.F2中白花植株的基因型种类比红花植株的多
解析:选D 本题的切入点在“若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株”上,相当于测交后代表现出1∶3的分离比,可推断该相对性状受两对等位基因控制,且两对基因独立遗传。设相关基因为A、a和B、b,则A_B_表现为红色,A_bb、aaB_、aabb表现为白色,因此F2的白色植株中既有纯合体又有杂合体;F2中红花植株的基因型有AaBb、AABB、AaBB、AABb 4种;控制红花与白花的两对基因独立遗传,位于两对同源染色体上;F2中白花植株的基因型有5种,红花植株的基因型有4种。
2.某种自花传粉的植物,抗病和易感病分别由基因R、r控制,细胞中另有一对等位基因B、b对抗病基因的抗性表达有影响,BB使植物抗性完全消失,Bb使抗性减弱,表现为弱抗病。将易感病与抗病植株杂交,F1都是弱抗病,自交得F2表现易感病∶弱抗病∶抗病的比分别为7∶6∶3。下列推断正确的是( )
A.亲本的基因型是RRBB、rrbb
B.F2的弱抗病植株中纯合子占1/3
C.F2中全部抗病植株自交,后代抗病植株占8/9
D.不能通过测交鉴定F2易感病植株的基因型
解析:选D 根据题意可知,亲本的基因型为bbRR和BBrr。F2弱抗病植株的基因型是BbR_,包括BbRR和BbRr两种,没有纯合子。F2中抗病植株的基因型是bbRR和bbRr两种,比例为1∶2,所以抗病植株自交,其中bbRR的后代全部是抗性;bbRr自交,后代抗病∶不抗病=3∶1,因此F2全部抗病植株自交,后代不抗病的比例是2/3×1/4=1/6,抗病植株占1-1/6=5/6。F2中易感病植株的基因型包括BBrr、Bbrr、bbrr、BBRR、BBRr,其中BBrr、Bbrr、bbrr与bbrr测交,后代全为易感病个体;BBRR与bbrr测交,后代全为弱抗病个体;BBRr与bbrr测交,后代中一半易感病,一半弱抗病,因此不能用测交法判断F2易感病个体的基因型。
[类题通法]
性状分离比9∶3∶3∶1的变式题解题步骤
题点(二) 致死效应引起的性状分离比的偏离
3.(2019·黄山一模)现用山核桃甲(AABB)、乙(aabb)两品种作亲本杂交得F1,F1测交结果如表,下列有关叙述错误的是( )
测交类型
测交后代基因型种类及比例
父本
母本
AaBb
Aabb
aaBb
aabb
F1
乙
1
2
2
2
乙
F1
1
1
1
1
A.F1产生的AB花粉50%不能萌发,不能实现受精
B.F1自交得F2,F2的基因型有9种
C.F1花粉离体培养,将得到四种表现型不同的植株
D.正反交结果不同,说明这两对基因的遗传不遵循自由组合定律
解析:选D 正常情况下,双杂合子测交后代四种表现型的比例应该是1∶1∶1∶1,而作为父本的F1测交结果为AaBb∶Aabb∶aaBb∶aabb=1∶2∶2∶2,说明父本F1产生的AB花粉有50%不能完成受精作用;F1自交后代中有9种基因型;F1花粉离体培养,将得到四种表现型不同的单倍体植株;根据题意可知,正反交均有四种表现型说明符合基因自由组合定律。
4.某种鱼的鳞片有4种表现型:单列鳞、野生型鳞、无鳞和散鳞,由位于两对同源染色体上的两对等位基因决定(用A、a,B、b表示),且BB对生物个体有致死作用,将无鳞鱼和纯合野生型鳞鱼杂交,F1有两种表现型,野生型鳞鱼占50%,单列鳞鱼占50%;选取F1中的单列鳞鱼进行互交,其后代中有上述4种表现型,这4种表现型的比例为6∶3∶2∶1,则F1的亲本基因型组合是( )
A.Aabb×AAbb B.aaBb×aabb
C.aaBb×AAbb D.AaBb×AAbb
解析:选C 该鱼的鳞片有4种表现型,由两对独立遗传的等位基因控制,并且BB有致死作用,可推知该鱼种群4种表现型由A_Bb、A_bb、aaBb和aabb这4类基因型控制。F1中的单列鳞鱼相互交配能产生4种表现型的个体,可推出F1中的单列鳞鱼的基因型为AaBb。无鳞鱼和纯合野生型鳞鱼杂交,能得到基因型为AaBb的单列鳞鱼,先考虑B和b这对基因,亲本的基因型为Bb和bb,而亲本野生型鳞鱼为纯合子,故bb为亲本野生型鳞鱼的基因型,Bb为无鳞鱼的基因型;再考虑A和a这对基因,由于无鳞鱼和纯合野生型鳞鱼杂交后代只有两种表现型,且比例为1∶1,结合以上分析,亲本的基因型为AA和aa。这样基因型组合方式有AABb×aabb和AAbb×aaBb两种,第一种组合中基因型为AABb的个体表现为单列鳞,与题意不符,排除。
5.(2019·临沂模拟)在小鼠的一个自然种群中,体色有黄色(Y)和灰色(y),尾巴有短尾(D)和长尾(d),两对相对性状的遗传符合基因的自由组合定律。任取一对黄色短尾个体经多次交配,F1的表现型为黄色短尾∶黄色长尾∶灰色短尾∶灰色长尾=4∶2∶2∶1。实验中发现有些基因型有致死现象(胚胎致死)。以下说法错误的是( )
A.黄色短尾亲本能产生4种正常配子
B.F1中致死个体的基因型共有4种
C.表现型为黄色短尾的小鼠的基因型只有1种
D.若让F1中的灰色短尾雌雄鼠自由交配,则F2中灰色短尾鼠占2/3
解析:选B 由题干分析知,当个体中出现YY或DD时会导致胚胎死亡,因此黄色短尾个体的基因型为YyDd,能产生4种正常配子;F1中致死个体的基因型共有5种;表现型为黄色短尾的小鼠的基因型只有YyDd 1种;若让F1中的灰色短尾(yyDd)雌雄鼠自由交配,则F2中灰色短尾鼠占2/3。
[类题通法]
解答致死类问题的方法技巧
(1)从每对相对性状分离比角度分析。如:
6∶3∶2∶1⇒(2∶1)(3∶1)⇒一对显性基因纯合致死。
4∶2∶2∶1⇒(2∶1)(2∶1)⇒两对显性基因纯合致死。
(2)从F2每种性状的基因型种类及比例分析。如BB致死:
题点(三) 基因累加引起的性状分离比的偏离
6.(2016·上海高考,有改动)控制棉花纤维长度的三对等位基因A/a、B/b、C/c对长度的作用相等,分别位于三对同源染色体上。已知基因型为aabbcc的棉花纤维长度为6 cm,每个显性基因增加纤维长度2 cm。棉花植株甲(AABbcc)与乙(aaBbCc)杂交,则F1的棉花纤维长度范围是( )
A.6~14 cm B.6~16 cm
C.8~14 cm D.8~16 cm
解析:选C AABbcc和aaBbCc杂交得到的F1中,显性基因最少的基因型为Aabbcc,显性基因最多的基因型为AaBBCc,由于每个显性基因增加纤维长度2 cm,所以F1的棉花纤维长度范围是(6+2)~(6+8)cm。
7.旱金莲由三对等位基因控制花的长度,这三对基因分别位于三对同源染色体上,作用相等且具叠加性。已知每个显性基因控制花长为5 mm,每个隐性基因控制花长为2 mm。花长为24 mm的同种基因型个体相互授粉,后代出现性状分离,其中与亲本具有同等花长的个体所占比例最可能是( )
A.1/16 B.2/16
C.5/16 D.6/16
解析:选D 由“花长为24 mm的同种基因型个体相互授粉,后代出现性状分离”说明花长为24 mm的个体为杂合子,再结合题干中的其他条件,可推知花长为24 mm的亲本中含4个显性基因和2个隐性基因,若两隐性基因杂合时,假设该个体基因型为AaBbCC,则其互交后代含4个显性基因和2个隐性基因的基因型有:AAbbCC、 aaBBCC、 AaBbCC,这三种基因型在后代中所占的比例为:1/4×1/4×1+1/4×1/4×1+1/2×1/2×1=6/16;若两隐性基因纯合时,假设该个体基因型为AABBcc,则后代基因仍为AABBcc,都与亲本具有同等花长,但选项中无此答案,因此只有D项符合题意。
[类题通法]
基因遗传效应累加的分析
相关原理
举例分析(以基因型AaBb为例)
自交后代比例
测交后代比例
显性基因在基因型中的个数影响性状表现
AABB∶(AaBB、AABb)∶(AaBb、aaBB、AAbb)∶(Aabb、aaBb)∶aabb=1∶4∶6∶4∶1
AaBb∶(Aabb、aaBb)∶aabb=1∶2∶1
题点(四) 基因完全连锁引起的性状分离比的偏离
8.已知桃树中,树体乔化与矮化为一对相对性状(由等位基因A、a控制),蟠桃果形与圆桃果形为一对相对性状(由等位基因B、b控制),以下是相关的两组杂交实验。
杂交实验一:乔化蟠桃(甲)×矮化圆桃(乙)→F1:乔化蟠桃∶矮化圆桃=1∶1
杂交实验二:乔化蟠桃(丙)×乔化蟠桃(丁)→F1:乔化蟠桃∶矮化圆桃=3∶1
根据上述实验判断,以下关于甲、乙、丙、丁四个亲本的基因在染色体上的分布情况正确的是( )
解析:选D 根据实验二:乔化×乔化→F1出现矮化,说明乔化相对于矮化是显性性状,蟠桃×蟠桃→F1出现圆桃,蟠桃对圆桃是显性性状。实验一后代中乔化∶矮化=1∶1,属于测交类型,说明亲本的基因型为Aa和aa;蟠桃∶圆桃=1∶1,也属于测交类型,说明亲本的基因型为Bb和bb,推出亲本的基因型为AaBb、aabb,如果这两对性状的遗传遵循自由组合定律,则实验一的杂交后代应出现2×2=4种表现型,比例应为1∶1∶1∶1,与实验一的杂交结果不符,说明上述两对相对性状的遗传不遵循自由组合定律,控制两对相对性状的基因不在两对同源染色体上。同理推知,杂交实验二亲本基因型应是AaBb、AaBb,基因图示如果为C,则杂交实验二后代比例为1∶2∶1,所以C不符合。
二、多对等位基因的自由组合现象问题
n对等位基因(完全显性)位于n对同源染色体上的遗传规律
相对性状
对数
等位基因
对数
F1配子
F1配子可
能组合数
F2基因型
F2表现型
种类
比例
种类
比例
种类
比例
1
1
2
1∶1
4
3
1∶2∶1
2
3∶1
2
2
22
(1∶1)2
42
32
(1∶2∶1)2
22
(3∶1)2
3
3
23
(1∶1)3
43
33
(1∶2∶1)3
23
(3∶1)3
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
n
n
2n
(1∶1)n
4n
3n
(1∶2∶1)n
2n
(3∶1)n
[题点全练]
9.某植物红花和白花为一对相对性状,同时受多对等位基因控制(如A、a;B、b;C、c……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_……)才开红花,否则开白花。现有甲、乙、丙、丁4个纯合白花品系,相互之间进行杂交,杂交组合、后代表现型及其比例如表所示,下列分析错误的是( )
组一
组二
组三
组四
组五
组六
P
甲×乙
乙×丙
乙×丁
甲×丙
甲×丁
丙×丁
F1
白色
红色
红色
白色
红色
白色
F2
白色
红色81∶白色175
红色27∶白色37
白色
红色81∶白色175
白色
A.组二F1基因型可能是AaBbCcDd
B.组五F1基因型可能是AaBbCcDdEE
C.组二和组五的F1基因型可能相同
D.这一对相对性状最多受四对等位基因控制,且遵循自由组合定律
解析:选D 组二和组五的F1自交,F2的分离比为红色∶白色=81∶175,即红花占81/(81+175)=(3/4)4,则可推测这对相对性状至少受四对等位基因控制,且四对基因分别位于四对同源染色体上,遵循自由组合定律。组二、组五的F1至少含四对等位基因,当该对性状受四对等位基因控制时,组二、组五的F1基因型都可为AaBbCcDd;当该对性状受五对等位基因控制时,组五F1基因型可能是AaBbCcDdEE。
10.某种植物的表现型有高茎和矮茎、紫花和白花,其中紫花和白花这对相对性状由两对等位基因控制,这两对等位基因中任意一对为隐性纯合则表现为白花。用纯合的高茎白花个体与纯合的矮茎白花个体杂交,F1表现为高茎紫花,F1自交产生F2,F2有4种表现型:高茎紫花162株,高茎白花126株,矮茎紫花54株,矮茎白花42株。请回答下列问题:
(1)根据此杂交实验结果可推测,株高受________对等位基因控制,依据是________________________________。在F2中矮茎紫花植株的基因型有________种,矮茎白花植株的基因型有________种。
(2)如果上述两对相对性状的基因自由组合,则理论上F2中高茎紫花、高茎白花、矮茎紫花和矮茎白花这4种表现型的数量比为________________。
解析:(1)根据F2中高茎∶矮茎≈3∶1,说明株高遗传遵循分离定律,该性状受1对等位基因控制,其中高茎(用D表示)为显性性状。控制花色的两对基因中任意一对为隐性纯合则表现为白花,即只有双显性个体(用A_B_表示)为紫花;根据F2中紫花∶白花约为9∶7可判断F1紫花的基因型为AaBb,所以在F2中矮茎紫花植株(ddA_B_)的基因型有4种,矮茎白花植株(ddA_bb、ddaaB_、ddaabb)的基因型共有5种。(2)若这两对相对性状的基因自由组合,则F1(DdAaBb)自交,F2中表现型及比例为(3高茎∶1矮茎)(9紫花∶7白花)=27高茎紫花∶21高茎白花∶9矮茎紫花∶7矮茎白花。
答案:(1)1 F2中高茎∶矮茎=3∶1 4 5
(2)27∶21∶9∶7
[类题通法]
判断控制性状等位基因对数的方法
(1)若F2中某性状所占分离比为(3/4)n,则由n对等位基因控制。
(2)若F2子代性状分离比之和为4n,则由n对等位基因控制。
课堂一刻钟
1.(2015·海南高考)下列叙述正确的是( )
A.孟德尔定律支持融合遗传的观点
B.孟德尔定律描述的过程发生在有丝分裂中
C.按照孟德尔定律,AaBbCcDd个体自交,子代基因型有16种
D.按照孟德尔定律,对AaBbCc个体进行测交,测交子代基因型有8种
易错探因——概念不清
融合遗传指的是亲本双方的性状在后代中都有体现,不表现一定的分离比。孟德尔定律否定了融合遗传的观点。考生会因对融合遗传的概念不理解而出错。
解析:选D 孟德尔定律的前提是遗传因子独立存在,不相互融合;孟德尔定律描述的过程发生在减数分裂中;按照孟德尔定律,AaBbCcDd个体自交,子代基因型有3×3×3×3=81(种);按照孟德尔定律,对AaBbCc个体进行测交,测交子代基因型有2×2×2=8(种)。
2.(2016·全国卷Ⅱ)某种植物的果皮有毛和无毛、果肉黄色和白色为两对相对性状,各由一对等位基因控制(前者用D、d表示,后者用F、f表示),且独立遗传。利用该种植物三种不同基因型的个体(有毛白肉A、无毛黄肉B、无毛黄肉C)进行杂交,实验结果如下:
回答下列问题:
(1)果皮有毛和无毛这对相对性状中的显性性状为________,果肉黄色和白色这对相对性状中的显性性状为________。
(2)有毛白肉A、无毛黄肉B和无毛黄肉C的基因型依次为________________________。
(3)若无毛黄肉B自交,理论上,下一代的表现型及比例为________________________。
(4)若实验3中的子代自交,理论上,下一代的表现型及比例为____________________。
(5)实验2中得到的子代无毛黄肉的基因型有________________。
满分必备——答题规范
只有根据题目要求准确写出表现型,同时说明性状分离比才能得满分。如果不能根据要求错答为基因型及比例或答题不全面都会导致失分。
解析:(1)由实验3有毛白肉A与无毛黄肉C杂交的子代都是有毛黄肉,可判断果皮有毛对无毛为显性性状,果肉黄色对白色为显性性状。(2)依据性状与基因的显隐性对应关系,可确定有毛白肉A的基因型是D_ff,无毛黄肉B的基因型是ddF_,因有毛白肉A和无毛黄肉B的子代果皮都表现为有毛,则有毛白肉A的基因型是DDff;又因有毛白肉A和无毛黄肉B的子代黄肉∶白肉为1∶1,则无毛黄肉B的基因型是ddFf;由有毛白肉A(DDff)与无毛黄肉C(ddF_)的子代全部为有毛黄肉可以推测,无毛黄肉C的基因型为ddFF。(3)无毛黄肉B(ddFf)自交后代的基因型为ddFF∶ddFf∶ddff=1∶2∶1,故后代表现型及比例为无毛黄肉∶无毛白肉=3∶1。(4)实验3中亲代的基因型是DDff和ddFF,子代为有毛黄肉,基因型为DdFf,其自交后代表现型为有毛黄肉(D_F_)∶有毛白肉(D_ff)∶无毛黄肉(ddF_)∶无毛白肉(ddff)=9∶3∶3∶1。(5)实验2中无毛黄肉B(ddFf)与无毛黄肉C(ddFF)杂交,子代无毛黄肉的基因型为ddFF和ddFf。
答案:(1)有毛 黄肉 (2)DDff、ddFf、ddFF (3)无毛黄肉∶无毛白肉=3∶1 (4)有毛黄肉∶有毛白肉∶无毛黄肉∶无毛白肉=9∶3∶3∶1 (5)ddFF、ddFf
3.(2018·全国卷Ⅰ)果蝇体细胞有4对染色体,其中2、3、4号为常染色体。已知控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上。某小组用一只无眼灰体长翅雌蝇与一只有眼灰体长翅雄蝇杂交,杂交子代的表现型及其比例如下:
眼
性别
灰体长翅∶灰体残翅∶黑檀体长翅∶黑檀体残翅
1/2有眼
1/2雌
9∶3∶3∶1
1/2雄
9∶3∶3∶1
1/2无眼
1/2雌
9∶3∶3∶1
1/2雄
9∶3∶3∶1
回答下列问题:
(1)根据杂交结果,________(填“能”或“不能”)判断控制果蝇有眼/无眼性状的基因是位于X染色体还是常染色体上。若控制有眼/无眼性状的基因位于X染色体上,根据上述亲本杂交组合和杂交结果判断,显性性状是________,判断依据是___________________
________________________________________________________________________。
(2)若控制有眼/无眼性状的基因位于常染色体上,请用上表中杂交子代果蝇为材料设计一个杂交实验来确定无眼性状的显隐性(要求:写出杂交组合和预期结果)。
(3)若控制有眼/无眼性状的基因位于4号染色体上,用灰体长翅有眼纯合体和黑檀体残翅无眼纯合体果蝇杂交,F1相互交配后,F2中雌雄均有________种表现型,其中黑檀体长翅无眼所占比例为3/64时,则说明无眼性状为________(填“显性”或“隐性”)。
失分提醒——审题要细
在设计实验时,实验材料只能选取表中杂交子代果蝇,不能自选材料,否则就会造成不必要的失分,在解答遗传类实验设计题时,要注意材料的选择。
解析:(1)控制果蝇有眼/无眼性状的基因无论是位于X染色体还是常染色体上,两亲本杂交,子代中雌雄个体都可能会出现数量相同的有眼和无眼个体,因此不能根据表中给出的杂交结果判断控制有眼/无眼性状基因的位置。若控制有眼/无眼性状的基因位于X染色体上,只有当无眼为显性性状时,子代雌雄个体中才都会出现有眼和无眼性状的分离。(2)若控制无眼/有眼性状的基因位于常染色体上,杂交子代无眼∶有眼=1∶1,则说明亲本为显性杂合体和隐性纯合体测交,根据测交结果,子代两种性状中,一种为显性杂合体,一种为隐性纯合体,所以可选择均为无眼的雌雄个体进行杂交,观察子代的性状表现,若子代中无眼∶有眼=3∶1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状。(3)由题意知,控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上,控制有眼/无眼性状的基因位于4号染色体上,它们的遗传符合自由组合定律。现将具有三对相对性状的纯合亲本杂交,F1为杂合体(假设基因型为AaBbDd),F1相互交配后,F2表现型有2×2×2=8(种)。根据表格中的性状分离比9∶3∶3∶1可知,黑檀体为隐性性状,长翅为显性性状,若子代黑檀体(1/4)长翅(3/4)无眼(?)的概率为3/64,则无眼的概率为1/4,无眼为隐性性状。
答案:(1)不能 无眼 只有当无眼为显性时,子代雌雄个体中才都会出现有眼与无眼性状的分离 (2)杂交组合:无眼×无眼 预期结果:若子代中无眼∶有眼=3∶1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状 (3)8 隐性
4.(2017·海南高考)果蝇有4对染色体(Ⅰ~Ⅳ号,其中Ⅰ号为性染色体)。纯合体野生型果蝇表现为灰体、长翅、直刚毛,从该野生型群体中分别得到了甲、乙、丙三种单基因隐性突变的纯合体果蝇,其特点如表所示。
表现型
表现型特征
基因型
基因所在染色体
甲
黑檀体
体呈乌木色、黑亮
ee
Ⅲ
乙
黑体
体呈深黑色
bb
Ⅱ
丙
残翅
翅退化,部分残留
vgvg
Ⅱ
某小组用果蝇进行杂交实验,探究性状的遗传规律。回答下列问题:
(1)用乙果蝇与丙果蝇杂交,F1的表现型是________;F1雌雄交配得到的F2不符合9∶3∶3∶1的表现型分离比,其原因是__________________________________________________。
(2)用甲果蝇与乙果蝇杂交,F1的基因型为________、表现型为________,F1雌雄交配得到的F2中果蝇体色性状________(填“会”或“不会”)发生分离。
(3)该小组又从乙果蝇种群中得到一只表现型为焦刚毛、黑体的雄蝇,与一只直刚毛灰体雌蝇杂交后,子一代雌雄交配得到的子二代的表现型及其比例为直刚毛灰体♀∶直刚毛黑体♀∶直刚毛灰体♂∶直刚毛黑体♂∶焦刚毛灰体♂∶焦刚毛黑体♂=6∶2∶3∶1∶3
∶1,则雌雄亲本的基因型分别为_____________(控制刚毛性状的基因用A/a表示)。
破题障碍——能力欠缺,不会推理
此小题要根据子代的性状表现与伴性遗传的特点进行基因定位。由题中信息可知,子二代雄蝇:直刚毛∶焦刚毛=(3+1)∶(3+1)=1∶1,雌蝇:直刚毛∶焦刚毛=8∶0=1∶0,表明A和a基因位于X染色体。子二代雌蝇都是直刚毛,表明直刚毛是显性性状,子一代雄蝇为XAY,雌蝇为XAXa,亲本为XAXA×XaY。关于灰身和黑身,子二代雄蝇:灰身∶黑身=(3+3)∶(1+1)=3∶1,雌蝇:灰身∶黑身=6∶2=3∶1,故B和b基因位于常染色体,子一代为Bb×Bb。由以上分析可得出雌雄亲本的基因型。
解析:(1)根据表格分析,甲为eeBBVgVg,乙为EEbbVgVg,丙为EEBBvgvg。乙果蝇与丙果蝇杂交,子代为EEBbVgvg,即灰体长翅。F1雌雄交配,由于BbVgvg均位于Ⅱ号染色体上,不能进行自由组合,故得到的F2不符合9∶3∶3∶1的表现型分离比。(2)甲果蝇与乙果蝇杂交,即eeBBVgVg×EEbbVgVg,F1的基因型为EeBbVgVg,表现型为灰体。F1雌雄交配,只看EeBb这两对等位基因,即EeBb×EeBb,F1为9E_B_(灰体)∶3E_bb(黑体)∶3eeB_(黑檀体)∶1eebb,发生性状分离。(3)子二代雄蝇:直刚毛∶焦刚毛=(3+1)∶(3+1)=1∶1,雌蝇:直刚毛∶焦刚毛=8∶0=1∶0,表明A和a基因位于X染色体。子二代雌蝇都是直刚毛,表明直刚毛是显性性状,子一代雄蝇为XAY,雌蝇为XAXa,亲本为XAXA×XaY。关于灰身和黑身,子二代雄蝇:灰身∶黑身=(3+3)∶(1+1)=3∶1,雌蝇:灰身∶黑身=6∶2=3∶1,故B和b基因位于常染色体,子一代为Bb×Bb。综上所述,亲本为XAXABB、XaYbb。
答案:(1)灰体长翅膀 两对等位基因均位于Ⅱ号染色体上,不能进行自由组合 (2)EeBb 灰体 会
(3)XAXABB、XaYbb
[学情考情·了然于胸]
一、明考情·知能力——找准努力方向
考查知识
1.自由组合定律与分离定律的关系。
2.亲子代基因型、表现型推导和相应比例计算的问题。
3.性状显隐性的判断类型和方法。
考查能力
1.推理能力:主要考查假说-演绎法和科学思维在遗传类试题中的应用。
2.迁移应用能力:综合考查遗传规律和伴性遗传的知识,借此考查知识的迁移应用能力和综合能力。
二、记要点·背术语——汇总本节重点
1.自由组合定律
(1)具有两对相对性状的纯种豌豆杂交,F2出现9种基因型、4种表现型,表现型的比例是9∶3∶3∶1。
(2)生物个体的基因型相同,表现型不一定相同;表现型相同,基因型也不一定相同。
(3)F1产生配子时,等位基因分离,非同源染色体上的非等位基因可以自由组合,产生比例相等的4种配子。
2.分离定律与自由组合定律的关系
(1)基因的分离定律和自由组合定律,同时发生在减数第一次分裂后期,分别由同源染色体的分离和非同源染色体的自由组合所引起。
(2)分离定律和自由组合定律是真核生物细胞核基因在有性生殖中的传递规律。分离定律是自由组合定律的基础。
[课下达标检测]
一、选择题
1.下列有关基因分离定律和基因自由组合定律的说法,正确的是( )
A.一对相对性状的遗传一定遵循基因的分离定律而不遵循自由组合定律
B.分离定律发生在配子产生过程中,自由组合定律发生在配子随机结合过程中
C.多对等位基因遗传时,在等位基因分离的同时,非等位基因自由组合
D.若符合自由组合定律,双杂合子自交后代不一定出现9∶3∶3∶1的性状分离比
解析:选D 如果一对相对性状由多对非同源染色体上的等位基因控制,则遵循自由组合定律;自由组合定律也发生在减数分裂形成配子的过程中;多对等位基因如果不位于非同源染色体上,则不遵循自由组合定律;如果双杂合子的两对等位基因之间存在互作关系或具某些基因型的个体致死时,则可能不符合9∶3∶3∶1的性状分离比。
2.(2019·安阳校级模拟)将两株植物杂交,子代植株的性状为:37株红果叶片上有短毛,19株红果叶片无毛,18株红果叶片上有长毛,13株黄果叶片上有短毛,7株黄果叶片上有长毛,6株黄果叶片无毛。下列叙述错误的是( )
A.果实红色对黄色为显性性状
B.若只考虑叶毛性状,则无毛个体是纯合体
C.两亲本植株都是杂合体
D.两亲本的表现型是红果长毛
解析:选D 根据子代红果与黄果分离比为(37+19+18)∶(13+7+6)≈3∶1,说明果实红色对黄色为显性性状。就叶毛来说,子代短毛∶无毛∶长毛=2∶1∶1,说明其基因型为Bb∶BB∶bb=2∶1∶1,所以无毛与长毛都是纯合体。根据亲本杂交后代都发生了性状分离,说明两株亲本植株都是杂合体。根据子代红果与黄果分离比为(37+19+18)∶(13+7+6)≈3∶1,说明此对性状的双亲均表现为红果;根据子代短毛∶无毛∶长毛=(37+13)∶(19+6)∶(18+7)=2∶1∶1,说明此对性状的双亲均表现为短毛,因此两亲本的表现型都是红果短毛。
3.果蝇的灰身(A)与黑身(a)、大脉翅(B)与小脉翅(b)是两对相对性状,相关基因位于常染色体上且独立遗传。灰身大脉翅的雌蝇和灰身小脉翅的雄蝇杂交,子代中47只为灰身大脉翅,49只为灰身小脉翅,17只为黑身大脉翅,15只为黑身小脉翅。下列说法错误的是( )
A.亲本中雌雄果蝇的基因型分别为AaBb和Aabb
B.亲本雌蝇产生卵的基因组成种类数为4种
C.子代中表现型为灰身大脉翅个体的基因型为AaBb
D.子代中体色和翅型的表现型比例分别为3∶1和1∶1
解析:选C 由题中数据可知子代中灰身∶黑身=(47+49)∶(17+15)=3∶1,可推知亲本基因型是Aa和Aa;大脉翅∶小脉翅=(47+17)∶(49+15)=1∶1,可推知亲本基因型是Bb和bb,所以亲本灰身大脉翅雌蝇基因型是AaBb,灰身小脉翅雄蝇基因型是Aabb,A项正确;由A项可知亲本灰身大脉翅雌蝇基因型是AaBb,其减数分裂产生的卵细胞基因型有AB、Ab、aB、ab 4种类型;由亲本基因型可知,子代中表现型为灰身大脉翅个体的基因型为AABb或AaBb;由A项分析可知D项正确。
4.(2019·保定一模)某植物正常株开两性花,且有只开雄花和只开雌花的两种突变型植株。取纯合雌株和纯合雄株杂交,F1全为正常株,F1自交所得F2中正常株∶雄株∶雌株=9∶3∶4。下列推测不合理的是( )
A.该植物的性别由位于非同源染色体上的两对基因决定
B.雌株和雄株两种突变型都是正常株隐性突变的结果
C.F1正常株测交后代表现为正常株∶雄株∶雌株=1∶1∶2
D.F2中纯合子测交后代表现为正常株∶雄株∶雌株=2∶1∶1
解析:选D 若基因用A、a和B、b表示,由题干可知,F1自交所得F2中正常株∶雄株∶雌株=9∶3∶4=9∶3∶(3+1),则F1基因型为AaBb,双亲为AAbb和aaBB,符合基因的自由组合定律;F1正常株测交后代为AaBb∶Aabb∶aaBb∶aabb=1∶1∶1∶1,表现型为正常株∶雄株∶雌株=1∶1∶2;F2中纯合子有AABB、AAbb、aaBB、aabb,测交后代分别为AaBb、Aabb、aaBb、aabb,表现型为正常株∶雄株∶雌株=1∶1∶2。
5.在孟德尔两对相对性状的杂交实验中,用纯合的黄色圆粒和绿色皱粒豌豆作亲本杂交得F1,F1全为黄色圆粒,F1自交得F2。在F2中,①用绿色皱粒人工传粉给黄色圆粒豌豆,②用绿色圆粒人工传粉给黄色圆粒豌豆,③让黄色圆粒自交,三种情况独立进行实验,则子代的表现型比例分别为( )
A.①4∶2∶2∶1 ②15∶8∶3∶1 ③64∶8∶8∶1
B.①3∶3∶1∶1 ②4∶2∶2∶1 ③25∶5∶5∶1
C.①1∶1∶1∶1 ②6∶3∶2∶1 ③16∶8∶2∶1
D.①4∶2∶2∶1 ②16∶8∶2∶1 ③25∶5∶5∶1
解析:选D 用纯合的黄色圆粒和绿色皱粒豌豆作亲本杂交得F1,F1全为黄色圆粒,可见黄色、圆粒均为显性性状。若用A表示黄色基因,B表示圆粒基因,则F2中黄色圆粒豌豆基因型有4种,AABB∶AaBb∶AaBB∶AABb=1∶4∶2∶2,减数分裂产生配子及其比例为AB∶Ab∶aB∶ab=4∶2∶2∶1,则①用绿色皱粒人工传粉给黄色圆粒豌豆,②用绿色圆粒人工传粉给黄色圆粒豌豆,③让黄色圆粒自交,三种情况独立进行实验,子代的表现型比例分别为①4∶2∶2∶1;②16∶8∶2∶1;③25∶5∶5∶1。
6.某植物叶形的宽叶和窄叶是一对相对性状,用纯合的宽叶植株与窄叶植株进行杂交,如下表(相关基因用A、a;B、b;C、c……表示)。下列相关叙述错误的是( )
母本
父本
子一代
子二代
杂交组合一
宽叶
窄叶
宽叶
宽叶∶窄叶=3∶1
杂交组合二
宽叶
窄叶
宽叶
宽叶∶窄叶=15∶1
杂交组合三
宽叶
窄叶
宽叶
宽叶∶窄叶=63∶1
A.该植物的叶形至少受三对等位基因控制
B.只要含有显性基因,该植株的表现型即为宽叶
C.杂交组合一亲本的基因型可能是AABBcc、aaBBcc
D.杂交组合三的子二代宽叶植株的基因型有26种
解析:选C 由表格信息可知,宽叶植株与窄叶植株杂交,子一代都是宽叶,说明宽叶是显性性状。杂交组合一,子二代窄叶植株所占的比例是1/4,说明符合一对杂合子自交实验结果;杂交组合二,子二代窄叶植株所占的比例是1/16,说明符合两对杂合子自交实验结果;杂交组合三,子二代窄叶植株所占的比例是1/64,说明符合三对杂合子自交实验结果,因此该植物的宽叶和窄叶性状至少由三对等位基因控制,且三对等位基因在遗传过程中遵循自由组合定律,隐性纯合子表现为窄叶,其他都表现为宽叶。若杂交组合一的亲本为AABBcc、aaBBcc,则F1为AaBBcc有一对显性基因纯合,子二代应全表现为宽叶。杂交组合三,子一代的基因型是AaBbCc,子二代的基因型有3×3×3=27(种),其中基因型为aabbcc的植株表现为窄叶,因此杂交组合三的子二代宽叶植株的基因型有26种。
7.柑橘的果皮色泽同时受多对等位基因控制(如A、a;B、b;C、c……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_……)为红色,当个体的基因型中每对等位基因都不含显性基因时(即aabbcc……)为黄色,否则为橙色。现有三株柑橘进行如下甲、乙两组杂交实验:
实验甲:红色×黄色→红色∶橙色∶黄色=1∶6∶1
实验乙:橙色×红色→红色∶橙色∶黄色=3∶12∶1
据此分析错误的是( )
A.果皮的色泽受3对等位基因的控制
B.实验甲亲、子代中红色植株基因型相同
C.实验乙橙色亲本有4种可能的基因型
D.实验乙的子代中,橙色个体有9种基因型
解析:选C 依题意和实验甲的结果“子代红色、黄色分别占1/8、1/8”可推知:果皮的色泽受3对等位基因的控制,实验甲亲、子代红色植株基因型为AaBbCc,亲代黄色植株的基因型为aabbcc;实验乙的子代中,红色、橙色、黄色分别占3/16、3/4、1/16,说明相应的橙色亲本有3种可能的基因型:Aabbcc、aaBbcc、aabbCc;实验乙的子代中,共有12种基因型,其中红色的有2种,黄色的有1种,则橙色个体有9种基因型。
8.(2019·黔东南四校模拟)凤仙花的花瓣有单瓣和重瓣两种,由一对等位基因控制,且单瓣对重瓣为显性,在开花时含有显性基因的精子不育而含隐性基因的精子可育,卵细胞不论含显性还是隐性基因都可育。现取自然情况下多株单瓣凤仙花自交得F1,则对F1中单瓣与重瓣的比值分析正确的是( )
A.单瓣与重瓣的比值为3∶1
B.单瓣与重瓣的比值为1∶1
C.单瓣与重瓣的比值为2∶1
D.单瓣与重瓣的比值无规律
解析:选B 设相关基因用A、a表示。由题意可知,由于无法产生含A的精子,故单瓣凤仙花的基因型为Aa,多株单瓣凤仙花自交得F1,其中雄性亲本只能产生a一种精子,雌性亲本可产生A和a两种卵细胞,故后代基因型为1Aa、1aa,表现型比例为单瓣与重瓣的比值为1∶1。
9.某种动物的眼色由两对独立遗传的等位基因(A、a和B、b)控制,具体控制关系如图。下列相关叙述正确的是( )
A.A基因正常表达时,以任一链为模板转录和翻译产生酶A
B.B基因上可结合多个核糖体,以提高酶B的合成效率
C.该动物群体中无色眼的基因型只有1种,猩红色眼对应的基因型有4种
D.若一对无色眼亲本所形成的受精卵中基因a突然变成了基因A,或基因b突然变成了基因B,则发育成的子代为深红色眼
解析:选C A基因正常表达时,以非编码链为模板转录形成mRNA,以mRNA为模板翻译产生酶A;以B基因的一条链为模板,转录出的mRNA可结合多个核糖体,以提高酶B的合成效率;分析图示可知:无色眼没有酶A和酶B,为无色底物,缺乏A基因和B基因,基因型只有aabb这1种,猩红色眼有A基因控制合成的酶A或B基因控制合成的酶B,因此对应的基因型有4种,分别为AAbb、Aabb、aaBB、aaBb;若一对无色眼亲本(aabb)所形成的受精卵中基因a或b发生突变,发育成的子代的基因型为Aabb或aaBb,表现为猩红色眼。
10.果蝇的长翅和残翅由一对等位基因控制,灰身和黑身由另一对等位基因控制。一对长翅灰身果蝇杂交的子代中出现了残翅雌果蝇,雄果蝇中的黑身个体占1/4。不考虑变异的情况下,下列推理合理的是( )
A.两对基因位于同一对染色体上
B.两对基因都位于常染色体上
C.子代不会出现残翅黑身雌果蝇
D.亲本雌蝇只含一种隐性基因
解析:选B 由亲代长翅灰身果蝇杂交产生的子代中出现残翅和黑身果蝇判断,长翅对残翅为显性,灰身对黑身为显性。子代中出现了残翅雌果蝇,说明控制该性状基因位于常染色体上(若位于X染色体上,则雌果蝇应该全为长翅);雄果蝇中的黑身个体占1/4,说明控制该性状基因位于常染色体上(若位于X染色体上,则雄果蝇中的黑身个体占1/2),所以两个亲本都为杂合子,含有两个隐性基因;若两对基因位于一对同源染色体上或者两对同源染色体上,则子代都能出现上述结果;若亲本中两对基因位于两对同源染色体上,或者两个显性基因位于同源染色体的一条染色体上,两个隐性基因位于另一条染色体上,子代都可能出现残翅黑身雌果蝇。
11.(2019·唐山调研)某哺乳动物棒状尾(A)对正常尾(a)为显性;黄色毛(Y)对白色毛(y)为显性,但是雌性个体无论毛色基因型如何,均表现为白色毛。两对基因均位于常染色体上并遵循基因的自由组合定律。下列叙述正确的是( )
A.A与a、Y与y两对等位基因位于同一对同源染色体上
B.若想依据子代的表现型判断出性别,能满足要求的交配组合有两组
C.基因型为Yy的雌雄个体杂交,子代黄色毛和白色毛的比例为3∶5
D.若黄色与白色两个体交配,生出一只白色雄性个体,则母本的基因型是Yy
解析:选C 由控制两对性状的基因遵循自由组合定律可知,这两对基因分别位于两对同源染色体上;若想依据子代的表现型判断出性别,YY♂×yy♀、YY♂×Yy♀、YY♂×YY♀三组杂交组合都满足要求;基因型为Yy的雌雄个体杂交,F1基因型为1YY、2Yy、1yy,雄性中黄色毛∶白色毛=3∶1,雌性全为白色毛,故子代黄色毛和白色毛的比例为3∶5;当亲本的杂交组合为♂Yy×♀yy时,也可生出白色雄性(yy)个体。
12.甲、乙、丙三种植物的花色遗传均受两对具有完全显隐性关系的等位基因控制,且两对等位基因独立遗传。白色前体物质在相关酶的催化下形成不同色素,使花瓣表现相应的颜色,不含色素的花瓣表现为白色。色素代谢途径如图。据图分析下列叙述错误的是( )
A.基因型为Aabb的甲植株开红色花,测交后代为红花∶白花≈1∶1
B.基因型为ccDD的乙种植株,由于缺少蓝色素D基因必定不能表达
C.基因型为EEFF的丙种植株中,E基因不能正常表达
D.基因型为EeFf的丙植株,自交后代为白花∶黄花≈13∶3
解析:选B 分析图示可知,在甲种植物中,A_B_、aaB_和A_bb均开红花,aabb开白花,因此基因型为Aabb的植株,测交后代为红花(Aabb)∶白花(aabb)≈1∶1;基因型为ccDD的乙种植株,由于缺少C基因而不能合成蓝色素,但D基因仍可表达;在丙植株中,E基因的表达离不开f基因的表达产物f酶的催化,因此基因型为EEFF的植株缺少f基因,E基因不能正常表达;基因型为EeFf的丙植株自交,产生的子一代的基因型及比例为E_F_∶E_ff∶eeF_∶eeff=9∶3∶3∶1,E_ff能合成黄色素,含F基因的植株抑制E基因的表达,只有E_ff的植株表现为黄花,所以白花∶黄花≈13∶3。
二、非选择题
13.某严格闭花受粉植物,其花色黄色(Y)对绿色(y)为显性,种子圆粒(R)对皱粒(r)为显性。有人用黄色圆粒和绿色圆粒的两亲本进行杂交,实验结果(F1)为897黄色圆粒∶902绿色圆粒∶298黄色皱粒∶305绿色皱粒,请回答以下问题:
(1)根据F1推测Y、y和R、r两对等位基因位于________(填“同源”或“非同源”)染色体上;两亲本的基因型为:黄色圆粒________,绿色圆粒________。
(2)让F1中所有绿色圆粒植株自然生长结实(假设结实率、成活率等均相同),理论上其F2的表现型及数量比为______________________________。
(3)该植物中,抗病和感病由另一对等位基因控制,但未知其显隐性关系。现分别有1株抗病(甲)和感病(乙)植株(甲、乙是否为纯合子未知),请利用以上植株,探究抗病和感病的显隐性关系,简要写出实验思路并对实验结果进行分析。________________________________________________________________________
________________________________________________________________________
________________________________________________________________________。
解析:(1)由题干可推出,F1中黄色(Y_)∶绿色(yy)≈1∶1,圆粒(R_)∶皱粒(rr)≈3∶1,所以亲本基因型为YyRr和yyRr。(2)让F1中所有绿色圆粒植株(1/3yyRR、2/3yyRr)自然生长结实,理论上F2的表现型及数量比为(1/3+2/3×1/4)yyRR∶(2/3×1/2)yyRr∶(2/3×1/4)yyrr=(1/2yyRR+1/3 yyRr)绿色圆粒∶1/6yyrr 绿色皱粒=5∶1。(3)判断显、隐性状的一般方法:①确定显隐性性状时首选自交,看其后代有无性状分离,若有则亲本的性状为显性性状。②其次,让具有相对性状的两亲本杂交,看后代的表现型,若后代表现一种亲本性状,则此性状为显性性状。③考虑各种情况,设定基因来探究后代的表现型是否符合题意来确定性状的显隐性。
答案:(1)非同源 YyRr yyRr
(2)绿色圆粒(或绿圆)∶绿色皱粒(或绿皱)=5∶1
(3)答案一:将抗病(甲)和感病(乙)植株进行自交,如果某植株后代出现性状分离,则该植株具有的性状(或表现型)为显性性状;如果自交后代都不出现性状分离,则将2株植株(或甲、乙)的自交后代进行杂交,杂交后代表现出来的性状(或表现型)即为显性性状
答案二:将抗病(甲)和感病(乙)植株进行杂交,如果后代只表现一种性状(或表现型),则该性状(或表现型)即为显性性状;如果出现两种性状(或表现型),则将杂交后代进行自交,出现性状分离的植株的性状(或表现型)即为显性性状
14.果蝇眼色由A、a和B、b两对位于常染色体上的等位基因控制,基因A控制色素形成,基因B决定红色,基因b决定粉色;当基因A不存在时,果蝇眼色表现为白色。为了研究这两对等位基因的分布情况,某科研小组进行了杂交实验,选取一对红眼(AaBb)雌雄个体进行交配,统计结果。据此回答下列问题(不考虑基因突变和交叉互换):
(1)如果子代表现型及比例为红色∶白色∶粉色=____________,则这两对等位基因的遗传符合自由组合定律,表现型为白眼的果蝇中,纯合子的基因型为____________。选择子代粉色眼雌雄个体自由交配,所产生后代的表现型及比例为____________。
(2)如果子代的表现型及比例为红∶粉∶白=2∶1∶1,则这两对等位基因的分布情况可以为________________________________________________________________________
________________________________________________________________________
________________________________________________________________________。
(3)若这两对等位基因的遗传符合自由组合定律,取亲本果蝇(AaBb)进行测交,则后代的表现型及比例为______________。
解析:(1)红眼(AaBb)雌雄个体进行相互交配,如果符合自由组合定律,则亲本能够产生四种等比例配子,雌雄配子随机结合后应该能够产生红色、白色、粉色三种表现型的个体,且比例为9∶4∶3。白眼果蝇的基因型为aaBb、aaBB、aabb,其中纯合子的基因型为aaBB、aabb。子代粉色眼果蝇的基因型为1/3AAbb、2/3Aabb,其自由交配所产生的后代表现型及比例为粉色∶白色=8∶1。(2)红眼(AaBb)雌雄个体进行相互交配,如果子代的表现型及比例为红∶粉∶白=2∶1∶1,说明这两对等位基因的遗传不符合自由组合定律,通过子代的表现型及比例可推知这两对等位基因位于一对常染色体上,具体分布情况有两种:一种情况是一只果蝇基因A与基因b在一条染色体上,基因a与基因B在一条染色体上,另一只果蝇基因A与基因B在一条染色体上,基因a与基因b在一条染色体上;另一种情况是两只果蝇均是基因A与基因b在一条染色体上,基因a与基因B在一条染色体上。(3)若这两对等位基因的遗传符合自由组合定律,取亲本果蝇(AaBb)与基因型为aabb的果蝇进行测交,后代表现型及比例为红色∶白色∶粉色=1∶2∶1。
答案:(1)9∶4∶3 aaBB、aabb 粉色∶白色=8∶1
(2)A、a和B、b位于一对常染色体上,且一只果蝇基因A与基因b在一条染色体上,基因a与基因B在一条染色体上;另一只果蝇基因A与基因B在一条染色体上,基因a与基因b在一条染色体上(或A、a和B、b位于一对常染色体上,且两只果蝇均是基因A与基因b在一条染色体上,基因a与基因B在一条染色体上)
(3)红色∶白色∶粉色=1∶2∶1
15.香豌豆有许多品种,花色不同。现有3个纯合品种:1个红花、2个白花(白A和白B)。科学家利用3个品种做杂交实验,结果如下:
实验1:白花A×红花,F1表现为红花,F2表现为红花305株,白花97株
实验2:白花B×红花,F1表现为红花,F2表现为红花268株,白花93株
实验3:白花A×白花B,F1表现为红花,F2表现为红花273株,白花206株
请回答:
(1)根据上述杂交实验结果可推测,________花为显性,香豌豆花色受________对等位基因控制,依据是________________________________________________________________________
________________________________________________________________________。
(2)为了验证上述结论,可将实验3得到的F2植株自交,单株收获F2中红花植株所结的种子,每株的所有种子单独种植在一起可得到一个株系,观察多个这样的株系,则理论上,在所有株系中有________的株系F3花色的表现型及其数量比为红∶白=3∶1。
(3)科学家继续研究发现,香豌豆红花和白花这对相对性状可受多对等位基因控制。某科学家在大量种植该红花品种时,偶然发现了1株纯合白花植株。假设该白花植株与红花品种也只有一对等位基因存在差异,若要通过杂交实验来确定该白花植株是一个新等位基因突变造成的,还是属于上述2个白花品种中的一个,则:
该实验的思路:______________________________________________________。
预期实验结果和结论:_________________________________________________
________________________________________________________________________
________________________________________________________________________。
解析:(1)根据实验1和2,白花×红花,F1全为红花可知,红花为显性性状。实验3中,F2中红色个体占全部个体的比例为9/16=(3/4)2,可判断花色涉及2对等位基因,且A_B_为红色,其余基因型为白色。(2)实验3得到的F2中红花植株基因型及概率:1/9AABB、2/9AABb、2/9AaBB、4/9AaBb,自交所产生的株系如下:
AABB自交,株系:AABB红
AABb自交,株系:AAB_红∶AAbb白=3∶1
AaBB自交,株系:A_BB红∶aaBB白=3∶1
AaBb自交,株系:A_B_红∶(A_bb、aaB_、aabb)白=9∶7
故株系红∶白=3∶1共占4/9。
(3)设红花基因型为AABBCC。白花A:aaBBCC 白花B为:AAbbCC。若该白花植株是新等位基因突变,与红花品种也只有一对等位基因存在差异,则为AABBcc。故其与上述2个白花品系杂交,后代全部为红花。若该白花植株是2个品系中的一个,则为aaBBCC或AAbbCC,其与2个白花品系杂交,其中会有一个组合出现子代全为白花的现象。
答案:(1)红 2 实验3中,F2中红色个体占全部个体的比例为9/16=(3/4)2,依据n对等位基因自由组合且完全显性时,F2中显性个体的比例是(3/4)n,可判断花色涉及2对等位基因 (2)4/9
(3)用该白花植株分别与白花A、B杂交,观察子代花色
在2个杂交组合中,如果子代全部为红花,说明该白花植株是新等位基因突变造成的;如果1个组合的子代为红花,1个组合的子代为白花,说明该白花植株属于这2个白花品系之一
相关资料
更多