2020届高考数学一轮复习单元检测07《不等式推理与证明》提升卷单元检测 理数(含解析)
展开单元检测七 不等式、推理与证明(提升卷)
考生注意:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.
3.本次考试时间100分钟,满分130分.
4.请在密封线内作答,保持试卷清洁完整.
第Ⅰ卷(选择题 共60分)
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若a<b<0,则下列不等式一定不成立的是( )
A.< B.>
C.|a|>-b D.>
答案 A
解析 因为a<b<0,所以-=>0,即>,A不成立;-a>-b>0,>,B成立;-a=|a|>|b|=-b,C成立;当a=-3,b=-1时,=-,=-1,故>,D成立.
2.不等式≤0的解集为( )
A.
B.
C.∪(3,+∞)
D.∪[3,+∞)
答案 C
解析 不等式≤0可化为
∴解得x≤-或x>3,
∴不等式≤0的解集为∪(3,+∞).
3.下面几种推理过程是演绎推理的是( )
A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人
B.由三角形的性质,推测空间四面体的性质
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D.在数列{an}中,a1=1,an=,由此归纳出{an}的通项公式
答案 C
解析 因为演绎推理是由一般到特殊,所以选项C符合要求,平行四边形对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分.
4.“1+≥0”是“(x+2)(x-1)≥0”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 由1+≥0,得≥0,等价于(x-1)(x+2)≥0,且x≠1,解得x≤-2或x>1.由(x+2)(x-1)≥0,得x≤-2或x≥1,所以“1+≥0”能推出“(x+2)·(x-1)≥0”,“(x+2)(x-1)≥0”推不出“1+≥0”,故“1+≥0”是“(x+2)(x-1)≥0”的充分不必要条件,故选A.
5.若x>0,y>0,且2x+8y-xy=0,则xy的最小值为( )
A.8B.14C.16D.64
答案 D
解析 ∵x>0,y>0,且2x+8y-xy=0,
∴xy=2x+8y≥2,∴≥8,
∴xy≥64,当且仅当x=16,y=4时取等号,
∴xy的最小值为64,故选D.
6.已知实数a>0,b>0,+=1,则a+2b的最小值是( )
A.3B.2C.3D.2
答案 B
解析 ∵a>0,b>0,+=1,
∴a+2b=(a+1)+2(b+1)-3
=[(a+1)+2(b+1)]·-3
=-3≥3+2-3=2,
当且仅当=,即a=,b=时取等号,
∴a+2b的最小值是2,故选B.
7.若直线l:ax+by+1=0(a>0,b>0)把圆C:(x+4)2+(y+1)2=16分成面积相等的两部分,则+的最小值为( )
A.10B.8C.5D.4
答案 B
解析 由题意知,已知圆的圆心C(-4,-1)在直线l上,所以-4a-b+1=0,所以4a+b=1.所以+=(4a+b)=4++≥4+2=8,当且仅当=,即a=,b=时,等号成立.所以+的最小值为8.故选B.
8.在不等式组所表示的平面区域内随机地取一点M,则点M恰好落在第二象限的概率为( )
A.B.C.D.
答案 C
解析 如图,不等式组所表示的平面区域为一直角三角形,其面积为×3×=,其中在第二象限的区域为一直角三角形,其面积为×1×1=.所以点M恰好落在第二象限的概率为=,故选C.
9.(2018·河南名校联盟联考)已知变量x,y满足则z=3y-x的取值范围为( )
A.[1,2]B.[2,5]C.[2,6]D.[1,6]
答案 D
解析 画出不等式组表示的平面区域,如图中阴影部分所示(△ABC边界及其内部).
因为z=3y-x,所以y=x+z.当直线y=x+在y轴上的截距有最小值时,z有最小值;当在y轴上的截距有最大值时,z有最大值.由图可知,当直线y=x+经过点A(-1,0),在y轴上的截距最小,zmin=0-(-1)=1;经过点C(0,2)时,在y轴上的截距最大,zmax=3×2-0=6.所以z=3y-x的取值范围为[1,6],故选D.
10.小王计划租用A,B两种型号的小车安排30名队友(大多有驾驶证,会开车)出去游玩,A与B两种型号的车辆每辆的载客量都是5人,租金分别为1000元/辆和600元/辆,要求租车总数不超过12辆,不少于6辆,且A型车至少有1辆,则租车所需的最少租金为( )
A.1000元 B.2000元
C.3000元 D.4000元
答案 D
解析 设分别租用A,B两种型号的小车x辆、y辆,所用的总租金为z元,则z=1000x+600y,其中x,y满足不等式组(x,y∈N),作出可行域,如图阴影部分(包括边界)所示.
易知当直线y=-x+过点D(1,5)时,z取最小值,所以租车所需的最少租金为1×1000+5×600=4000(元),故选D.
11.(2018·贵州贵阳一中月考)若变量x,y满足约束条件则t=的取值范围是( )
A.B.C.D.
答案 B
解析 作出可行域,如图中阴影部分所示(包括边界).
t=表示可行域内的点与点M(3,2)连线的斜率.由图可知,当可行域内的点与点M的连线与圆x2+y2=4相切时斜率分别取最大值和最小值.设切线方程为y-2=k(x-3),即kx-y-3k+2=0,则有=2,解得k=或k=0,所以t=的取值范围是,故选B.
12.已知甲、乙两个容器,甲容器的容量为x(单位:L),装满纯酒精,乙容器的容量为z(单位:L),其中装有体积为y(单位:L)的水(x<z,y<z).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精an(单位:L),下列关于数列{an}的说法正确的是( )
A.当x=y=a时,数列{an}有最大值
B.设bn=an+1-an(n∈N*),则数列{bn}为递减数列
C.对任意的n∈N*,始终有an≤
D.对任意的n∈N*,都有an≤
答案 D
解析 对于A,若x+y>z,每次倾倒后甲容器都有剩余,则an<,故A错误;对于B,若x+y=z,则每次操作后乙容器所含酒精都为,bn=0,故B错误;对于C,若x=1,y=1,z=3,则a1=,=,则a1>,故C错误;对于D,当n→+∞时,甲乙两容器浓度趋于相等,当x+y≤z时,an=,当x+y>z时,an<,故选D.
第Ⅱ卷(非选择题 共70分)
二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.若在关于x的不等式x2-(a+1)x+a<0的解集中至多包含2个整数,则实数a的取值范围是____________.
答案 [-2,4]
解析 关于x的不等式x2-(a+1)x+a<0可化为(x-1)(x-a)<0.当a=1时,(x-1)2<0,无解,满足题意;当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.要使得解集中至多包含2个整数,则a≤4,且a≥-2,
所以实数a的取值范围是[-2,4].
14.已知x≥,则的最小值为__________.
答案 2+2
解析 设t=x-1,则x=t+1,所以===2t++2≥2+2,当且仅当t=时等号成立,所以所求最小值为2+2.
15.某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是________.(填影视配音、广播电视、公共演讲、播音主持)
答案 影视配音
解析 由①知甲和丙均不选播音主持,也不选广播电视;由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音,故答案为影视配音.
16.(2018·重庆调研)已知定义在R上的函数y=f(x)为增函数,且函数y=f(x+1)的图象关于点(-1,0)成中心对称,若实数a,b满足不等式f(4a-a2)+f(b2-2b-3)≤0,则当2≤a≤4时,a2+(b-1)2的最大值为______.
答案 20
解析 易知f(x)是奇函数,又f(x)是增函数,∴4a-a2≤-b2+2b+3,∴|a-2|≥|b-1|,在平面直角坐标系中画出表示的平面区域,如图中阴影部分(含边界)所示,a2+(b-1)2表示定点(0,1)到该平面区域内的动点(a,b)的距离的平方,由图可知动点(a,b)在图中点(4,3)或点(4,-1)处时,a2+(b-1)2取得最大值,最大值为42+22=20.
三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)
17.(12分)已知函数f(x)=2x+.
(1)若x∈(-1,+∞),求f(x)的最小值,并指出此时x的值;
(2)求不等式f(x)≥2x+2的解集.
解 (1)由x∈(-1,+∞)可得x+1>0.
因为f(x)=2x+=2x+2+-2≥4-2=2,所以f(x)≥2,
当且仅当2x+2=,即x=0时取等号.
故f(x)的最小值为2,此时x=0.
(2)由f(x)≥2x+2,得≥0,所以-1<x≤0,
故所求不等式的解集为(-1,0].
18.(12分)已知函数f(x)=(3x-1)a-2x+b.
(1)若f=,且a>0,b>0,求ab的最大值;
(2)当x∈[0,1]时,f(x)≤1恒成立,且2a+3b≥3,求z=的取值范围.
解 (1)因为f(x)=(3a-2)x+b-a,f=,
所以a+b-=,即a+b=8.
因为a>0,b>0,
所以a+b≥2,即4≥,所以ab≤16,
当且仅当a=b=4时等号成立,
所以ab的最大值为16.
(2)因为当x∈[0,1]时,f(x)≤1恒成立,且2a+3b≥3,
所以且2a+3b≥3,即
作出此不等式组表示的平面区域,如图阴影部分所示(含边界).
由图可得经过可行域内的点(a,b)与点(-1,-1)的直线的斜率的取值范围是,
所以z==+1的取值范围是.
19.(13分)2019年某企业计划引进新能源汽车生产设备,已知该设备全年需投入固定成本2 500万元,每生产x百辆新能源汽车,需另投入成本C(x)万元,且C(x)=由市场调研知,若每辆新能源汽车售价5万元,则全年内生产的新能源汽车当年能全部售完.
(1)求该企业2019年的利润L(x)万元关于年产量x(单位:百辆)的函数解析式(利润=销售额-成本);
(2)2019年产量为多少百辆时,企业所获利润最大?并求出最大利润.
解 (1)当0<x<40时,L(x)=5×100x-10x2-100x-2500=-10x2+400x-2500;
当x≥40时,L(x)=5×100x-501x-+4500-2500=2000-.
所以L(x)=
(2)当0<x<40时,L(x)=-10(x-20)2+1500,所以当0<x<40时,L(x)max=L(20)=1500;
当x≥40时,L(x)=2000-
≤2000-2=2000-200=1800,
当且仅当x=,即x=100时取等号,
所以L(x)max=L(100)=1800.
因为1800>1500,所以当x=100,即2019年年产量为100百辆时,该企业所获利润最大,且最大利润为1800万元.
20.(13分)已知数列{an}的前n项和为Sn,且满足4Sn与2an的等差中项为3(n∈N*).
(1)求数列{an}的通项公式;
(2)是否存在正整数k,使不等式k(-1)na<Sn(n∈N*)恒成立;若存在,求出k的最大值;若不存在,请说明理由;
(3)设=·n(n∈N*),若集合M={n|bn≥λ,n∈N*}恰有4个元素,求实数λ的取值范围.
解 (1)由4Sn与2an的等差中项为3,得
4Sn+2an=6,①
当n≥2时,4Sn-1+2an-1=6,②
①-②得an=an-1.
又因为在①式中,令n=1,得a1=1,所以数列{an}是以1为首项,为公比的等比数列,
所以数列{an}的通项公式为an=(n∈N*).
(2)原问题等价于k(-1)n2(n-1)
<(n∈N*)恒成立.
当n为奇数时,对任意正整数为k,不等式恒成立;
当n为偶数时,原不等式等价于2k2(n-1)+n-1-3<0恒成立,
令n-1=t,0<t≤,则原不等式等价于2kt2+t-3<0对0<t≤恒成立,k∈N*.
因为f(t)=2kt2+t-3在区间上单调递增,
故f(t)max=f=k-<0,即k<12.综上,正整数k的最大值为11.
(3)由=·n(n∈N*)及an=,
得bn=,bn+1-bn=,
当n=1时,b2>b1;当n≥2时,bn+1<bn,
且b1=,b2=2,b3=,b4=,b5=.
由集合M={n|bn≥λ,n∈N*}恰有4个元素,得<λ≤,即实数λ的取值范围为.