|学案下载
终身会员
搜索
    上传资料 赚现金
    2020年人教版九年级数学上册23.2.3《中心对称》学案(含答案)
    立即下载
    加入资料篮
    2020年人教版九年级数学上册23.2.3《中心对称》学案(含答案)01
    2020年人教版九年级数学上册23.2.3《中心对称》学案(含答案)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版九年级上册23.2.3 关于原点对称的点的坐标精品学案设计

    展开
    这是一份人教版九年级上册23.2.3 关于原点对称的点的坐标精品学案设计,共5页。

    23.2.3《中心对称》学案


    1.在平面直角坐标系中,点(3,-2)关于原点对称的点是( )


    A.(-3,2) B.(-3,-2) C.(3,-2) D.(3,2)





    2.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=________.





    3.如图,网格中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在网格中建立平面直角坐标系.


    (1)分别写出点A,B,C的坐标;


    (2)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出点A1,B1,C1的坐标.








    命题点 1 利用关于原点对称的点的坐标特点求坐标


    4.在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )


    A.(4,-3) B.(-4,3) C.(0,-3) D.(0,3)





    5.如图,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它在△PQR中的对应点N的坐标为________.





    6.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.











    7.已知▱ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2.若点A的坐标为(a,b),则点D的坐标为________.





    命题点 2 关于原点对称的点所在象限问题


    8.已知a<0,则点P(a2,-a+1)关于原点的对称点P′在( )


    A.第一象限 B.第二象限 C.第三象限 D.第四象限





    9.若点P(-a,a-3)关于原点对称的点是第二象限内的点,则a满足( )


    A.a>3 B.0<a≤3 C.a<0 D.a<0或a>3





    命题点 3 利用关于原点对称的点的坐标特点求代数式的值


    10.已知点A(2a+3b,-2)和点B(8,2a+4b)关于原点对称,那么a+b的值为( )


    A.6 B.10 C.-9 D.-16





    11.若点A(4,y-x)关于原点的对称点为B(x+2y,-1),则x2+y2=________.





    命题点 4 图形变换与坐标变化的综合


    12.已知点P(a,b)在第二象限,点P1与点P关于x轴对称,点P2与点P1关于y轴对称,又知点P3与点P关于坐标原点对称,且P2(m,n),P3(c,d),则有( )


    A.m=c,n=d B.m=-c,n=-d


    C.m=-c,n=d D.m=c,n=-d





    13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).


    (1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;


    (2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;


    (3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.



































    14.如图,在平面直角坐标系中,对△ABC进行循环的轴对称变换,若原来点A的坐标是(a,b),则经过第2018次变换后所得的点A的坐标是( )





    A.(a,-b) B.(-a,-b) C.(-a,b) D.(a,b)





    15.如图所示,在平面直角坐标系中,点P(1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P1,作点P1关于原点的对称点P2,向上平移2个单位长度得到点P3,作点P3关于原点的对称点P4……那么点P2018的坐标为____________.







































































    参考答案


    1.A


    2.5


    3.解:(1)A(1,-4),B(5,-4),C(4,-1).


    (2)△A1B1C1如图所示.





    A1(-1,4),B1(-5,4),C1(-4,1).


    4.C [解析] 在平面直角坐标系中,点(-2,3)关于原点的对称点是(2,-3),将(2,-3)向左平移2个单位长度得到的点的坐标是(0,-3).故选C.


    5.(-a,-b)


    6.(-1,-1)


    [解析] 过点A作AC⊥OB于点C.


    ∵OA=AB,∠OAB=90°,


    ∴AC=OC=BC=1,∴A(1,1),


    ∴点A关于原点对称的点的坐标为(-1,-1).


    7.(-2-a,-b)或(2-a,-b)


    [解析] 如图①,


    ∵点A的坐标为(a,b),AB与x轴平行,


    ∴B(2+a,b).∵点D与点B关于原点对称,


    ∴D(-2-a,-b).


    如图②,∵B(a-2,b).


    且点D与点B关于原点对称,∴D(2-a,-b).





    8.C [解析] ∵a<0,∴a2>0,-a+1>0,∴点P在第一象限,∴点P(a2,-a+1)关于原点的对称点P′在第三象限.


    9.C [解析] 点P(-a,a-3)关于原点对称的点的坐标为(a,3-a).∵点(a,3-a)在第二象限内,∴eq \b\lc\{(\a\vs4\al\c1(a<0,,3-a>0,))解得a<0.


    10.C [解析] 由题意可得eq \b\lc\{(\a\vs4\al\c1(2a+3b=-8,,2a+4b=2,))解这个方程组,得eq \b\lc\{(\a\vs4\al\c1(a=-19,,b=10,))∴a+b=-9.


    11.5 [解析] 由题意,得eq \b\lc\{(\a\vs4\al\c1(4=-x-2y,,y-x=1,))解这个方程组,得eq \b\lc\{(\a\vs4\al\c1(x=-2,,y=-1,))∴x2+y2=5.


    12.A [解析] 因为点P(a,b)与点P1关于x轴对称,所以P1(a,-b).因为点P2与点P1关于y轴对称,所以P2(-a,-b).又因为点P3与点P关于坐标原点对称,所以P3(-a,-b),所以有m=c,n=d.


    13.解:(1)A1(2,2),B1(3,-2).


    (2)A2(3,-5),B2(2,-1),C2(1,-3).


    (3)A3(5,3),B3(1,2),C3(3,1).


    14.A


    [解析] 能发现规律:经过三次变换后与初始坐标相同,由于2018÷3=672……2,所以第2108次变换后与第2次变换后点A的坐标一致,为(-a,b).


    15.(-1,-505)


    [解析] 根据题意可列出下面的表格:





    观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;除以4余2的点是除以4余1的点关于原点的对称点;能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;除以4余3的点在第二象限,是能被4整除的点关于原点的对称点.因为2018÷4=504……2,所以点P2018在第三象限,坐标为(-1,-505).


    向上平移
    关于原点的对称点
    向上平移
    关于原点的对称点
    P4(1,-1)
    P1(1,1)
    P2(-1,-1)
    P3(-1,1)
    P8(1,-2)
    P5(1,2)
    P6(-1,-2)
    P7(-1,2)
    P12(1,-3)
    P9(1,3)
    P10(-1,-3)
    P11(-1,3)




    相关学案

    初中数学人教版九年级上册23.2.3 关于原点对称的点的坐标导学案: 这是一份初中数学人教版九年级上册23.2.3 关于原点对称的点的坐标导学案,共2页。学案主要包含了课时安排,新知探究,精练反馈,学习小结,拓展延伸等内容,欢迎下载使用。

    数学九年级上册第二十三章 旋转23.2 中心对称23.2.3 关于原点对称的点的坐标导学案: 这是一份数学九年级上册第二十三章 旋转23.2 中心对称23.2.3 关于原点对称的点的坐标导学案,共7页。学案主要包含了旧知回顾,新知梳理,试一试,拓展延伸等内容,欢迎下载使用。

    人教版九年级上册23.2.3 关于原点对称的点的坐标学案: 这是一份人教版九年级上册23.2.3 关于原点对称的点的坐标学案,共3页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map