所属成套资源:(人教版)2020年九年级数学上册 ppt课件
初中数学人教版九年级上册24.2.2 直线和圆的位置关系获奖ppt课件
展开
这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系获奖ppt课件,共31页。PPT课件主要包含了学习目标,导入新课,情境引入,讲授新课,OA为⊙O的半径,BC⊥OA于A,BC为⊙O的切线,要点归纳,∵AB是☉O的直径,∴OE=OF等内容,欢迎下载使用。
1.会判定一条直线是否是圆的切线并会过圆上一点作圆的切线.2.理解并掌握圆的切线的判定定理及性质定理.(重点)3.能运用圆的切线的判定定理和性质定理解决问题.(难点)
转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?
都是沿切线方向飞出的.
生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.
问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?
观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?
经过半径的外端并且垂直于这条半径的直线是圆的切线.
判一判:下列各直线是不是圆的切线?如果不是,请说明为什么?
(1)不是,因为没有垂直.
(2),(3)不是,因为没有经过半径的外端点A.
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;
2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;
3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
例1:如图,∠ABC=45°,直线AB是☉O上的直径,点A,且AB=AC.求证:AC是☉O的切线.
解析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.
证明:∵AB=AC,∠ABC=45°,
∴∠ACB=∠ABC=45°.
∴∠BAC=180°-∠ABC-ACB=90°.
∴ AC是☉O的切线.
例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.
分析:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可.
证明:连接OC(如图). ∵ OA=OB,CA=CB, ∴ OC是等腰三角形OAB底边AB上的中线. ∴ AB⊥OC. ∵ OC是⊙O的半径, ∴ AB是⊙O的切线.
例3 如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E.求证:AC 是⊙O 的切线.
分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.
证明:连接OE ,OA, 过O 作OF ⊥AC.
∵⊙O 与AB 相切于E , ∴OE ⊥ AB.
又∵△ABC 中,AB =AC ,O 是BC 的中点.
∴AO 平分∠BAC,
∵OE 是⊙O 半径,OF =OE,OF ⊥ AC.
∴AC 是⊙O 的切线.
又OE ⊥AB ,OF⊥AC.
如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.
如图,OA=OB=5,AB=8, ⊙O的直径为6.求证:直线AB是⊙O的切线.
(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.
证切线时辅助线的添加方法
有切线时常用辅助线添加方法
见切点,连半径,得垂直.
(1)经过圆心且垂直于切线的直线必经过切点;
(2)经过切点且垂直于切线的直线必经过圆心.
思考:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?
∵直线l是⊙O 的切线,A是切点,
小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
(1)假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M,
(2)则OM
相关课件
这是一份人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系教案配套ppt课件,共19页。
这是一份九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系作业课件ppt,共19页。
这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系教学ppt课件,共17页。PPT课件主要包含了新课导入,教学设计,探究新知,能画几条,画切线的依据是什么,你能证明吗,反证法,切线的判定定理,知识归纳,OA为⊙O的半径等内容,欢迎下载使用。