|学案下载
终身会员
搜索
    上传资料 赚现金
    2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案
    立即下载
    加入资料篮
    2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案01
    2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案02
    2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案03
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案

    展开
    第三节 圆 的 方 程
    2019考纲考题考情



    1.圆的定义
    (1)在平面内,到定点的距离等于定长的点的轨迹叫圆。
    (2)确定一个圆最基本的要素是圆心和半径。
    2.圆的标准方程
    (x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心坐标,r为半径。
    3.圆的一般方程
    x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,其中圆心为,半径r=。
    4.点与圆的位置关系
    点和圆的位置关系有三种。
    圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),
    (1)点在圆上:(x0-a)2+(y0-b)2=r2。
    (2)点在圆外:(x0-a)2+(y0-b)2>r2。
    (3)点在圆内:(x0-a)2+(y0-b)2<r2。

    1.圆心在坐标原点半径为r的圆的方程为x2+y2=r2。
    2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0。
    3.二元二次方程表示圆的条件
    对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件。

    一、走进教材
    1.(必修2P124A组T1改编)圆x2+y2-4x+6y=0的圆心坐标是(  )
    A.(2,3) B.(-2,3)
    C.(-2,-3) D.(2,-3)
    解析 圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3)。故选D。
    答案 D
    2.(必修2P120例3改编)过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是(  )
    A.(x-3)2+(y+1)2=4
    B.(x+3)2+(y-1)2=4
    C.(x-1)2+(y-1)2=4
    D.(x+1)2+(y+1)2=4
    解析 设圆心C的坐标为(a,b),半径为r,因为圆心C在直线x+y-2=0上,所以b=2-a。因为|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2。所以a=1,b=1。所以r=2。所以方程为(x-1)2+(y-1)2=4。故选C。

    解析:因为A(1,-1),B(-1,1),所以AB的中垂线方程为y=x。由得所以圆心坐标为(1,1),r==2。则圆的方程为(x-1)2+(y-1)2=4。

    答案 C
    二、走近高考
    3.(2016·全国卷Ⅰ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(  )
    A.- B.-
    C. D.2
    解析 由题意可知,圆心为(1,4),所以圆心到直线的距离d==1,解得a=-。故选A。
    答案 A
    4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________。
    解析 设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则解得D=-2,E=0,F=0,即圆的方程为x2+y2-2x=0。

    解析:记A(0,0),B(2,0),C(1,1),连接AB,由圆过点A(0,0),B(2,0),知AB的垂直平分线x=1必过圆心。连接BC,又圆过点C(1,1),BC的中点为,BC所在直线的斜率kBC=-1,所以BC的垂直平分线为直线y=x-1,联立,得得圆心的坐标为(1,0),半径为1,故圆的方程为(x-1)2+y2=1,即x2+y2-2x=0。

    答案 x2+y2-2x=0
    三、走出误区
    微提醒:①忽视表示圆的充要条件D2+E2-4F>0;②错用点与圆的位置关系判定;③忽视圆的方程中变量的取值范围。
    5.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是(  )
    A.(-∞,-)∪(,+∞)
    B.(-∞,-2)∪(2,+∞)
    C.(-∞,-)∪(,+∞)
    D.(-∞,-2)∪(2,+∞)
    解析 将x2+y2+mx-2y+3=0化为圆的标准方程得2+(y-1)2=-2。由其表示圆可得-2>0,解得m<-2或m>2。
    答案 B
    6.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是(  )
    A.-1<a<1 B.0<a<1
    C.a>1或a<-1 D.a=±4
    解析 因为点(1,1)在圆内,所以(1-a)2+(1+a)2<4,即-1<a<1。故选A。
    答案 A
    7.已知实数x,y满足(x-2)2+y2=4,则3x2+4y2的最大值为________。
    解析 由(x-2)2+y2=4,得y2=4x-x2≥0,得0≤x≤4,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64(0≤x≤4),所以当x=4时,3x2+4y2取得最大值48。
    答案 48

    考点一 圆的方程
    【例1】 (1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________。
    (2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________。
    解析 (1)由已知kAB=0,所以AB的中垂线方程为x=3①。过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0②,联立①②,解得所以圆心坐标为(3,0),半径r==,所以圆C的方程为(x-3)2+y2=2。

    解析:设圆的方程为(x-a)2+(y-b)2=r2(r>0),因为点A(4,1),B(2,1)在圆上,故又因为=-1,解得a=3,b=0,r=,故所求圆的方程为(x-3)2+y2=2。

    (2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),将P,Q两点的坐标分别代入得又令y=0,得x2+Dx+F=0③。设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36④,联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0。故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0。
    答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0

    求圆的方程时,应根据条件选用合适的圆的方程。一般来说,求圆的方程有两种方法:(1)几何法:通过研究圆的性质进而求出圆的基本量。确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法:即设出圆的方程,用待定系数法求解。
    【变式训练】 (1)(2019·珠海联考)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的标准方程为(  )
    A.(x+1)2+(y-1)2=2
    B.(x-1)2+(y+1)2=2
    C.(x-1)2+(y-1)2=2
    D.(x+1)2+(y+1)2=2
    (2)(2019·河南豫西五校联考)在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为(  )
    A.x2+(y-1)2=4
    B.x2+(y-1)2=2
    C.x2+(y-1)2=8
    D.x2+(y-1)2=16
    解析 (1)由题意设圆心坐标为(a,-a),则有=即|a|=|a-2|,解得a=1。故圆心坐标为(1,-1),半径r==,所以圆C的标准方程为(x-1)2+(y+1)2=2。故选B。
    (2)直线x-by+2b+1=0过定点P(-1,2),如图。所以圆与直线x-by+2b+1=0相切于点P时,以点(0,1)为圆心的圆的半径最大,此时半径r为,此时圆的标准方程为x2+(y-1)2=2。故选B。

    答案 (1)B (2)B
    考点二 与圆有关的轨迹问题
    【例2】 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点。
    (1)求线段AP中点的轨迹方程;
    (2)若∠PBQ=90°,求线段PQ中点的轨迹方程。
    解 (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y)。
    因为P点在圆x2+y2=4上,
    所以(2x-2)2+(2y)2=4。
    故线段AP中点的轨迹方程为(x-1)2+y2=1(x≠2)。
    (2)设PQ的中点为N(x,y)。
    在Rt△PBQ中,|PN|=|BN|。
    设O为坐标原点,连接ON,则ON⊥PQ,
    所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
    所以x2+y2+(x-1)2+(y-1)2=4。
    整理得x2+y2-x-y-1=0,
    故线段PQ中点的轨迹方程为
    x2+y2-x-y-1=0。

    求与圆有关的轨迹问题时,根据题设条件的不同,常采用以下方法:
    1.直接法:直接根据题目提供的条件列出方程。
    2.定义法:根据圆、直线等定义列方程。
    3.几何法:利用圆的几何性质列方程。
    4.代入法:找到要求点与已知点的关系,代入已知点满足的关系式等。
    【变式训练】 自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为(  )
    A.8x-6y-21=0 B.8x+6y-21=0
    C.6x+8y-21=0 D.6x-8y-21=0
    解析 由题意得,圆心C的坐标为(3,-4),半径r=2,如图。因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D。

    答案 D
    考点三 与圆有关的最值问题微点小专题
    方向1:借助几何性质求最值
    【例3】 已知实数x,y满足方程x2+y2-4x+1=0,则(1)的最大值和最小值分别为________和________;
    (2)y-x的最大值和最小值分别为__________和__________;
    (3)x2+y2的最大值和最小值分别为__________和__________。
    解析 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆。
    (1)的几何意义是圆上一点与原点连线的斜率,所以设=k,即y=kx。当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时=,解得k=±。所以的最大值为,最小值为-。

    (2)y-x可看作是直线y=x+b在y轴上的截距。如图所示,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±,所以y-x的最大值为-2+,最小值为-2-。

    (3)x2+y2表示圆上的一点与原点距离的平方。由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值。又圆心到原点的距离为2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4。
    答案 (1) - (2)-2+ -2-
    (3)7+4 7-4

    借助几何性质求与圆有关的最值问题,根据代数式的几何意义,借助数形结合思想求解。
    1.形如μ=形式的最值问题,可转化为动直线斜率的最值问题或转化为线性规划问题。
    2.形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题或转化为线性规划问题。
    3.形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题。
    方向2:建立函数关系求最值
    【例4】 (2019·厦门模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则·的最大值为________。
    解析 由题意,知=(2-x,-y),=(-2-x,-y), 所以·=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以·=-(y-3)2+1+y2-4=6y-12。由圆的方程x2+(y-3)2=1,易知2≤y≤4,所以,当y=4时,·的值最大,最大值为6×4-12=12。
    答案 12

    根据题中条件列出相关的函数关系式,再根据函数知识或基本不等式求最值。
    【题点对应练】 
    1.(方向1)已知两点A(0,-3),B(4,0),若点P是圆C:x2+y2-2y=0上的动点,则△ABP的面积的最小值为(  )
    A.6    B.
    C.8    D.
    解析 x2+y2-2y=0可化为x2+(y-1)2=1,则圆C为以(0,1)为圆心,1为半径的圆。如图,过圆心C向直线AB作垂线交圆于点P,连接BP,AP,这时△ABP的面积最小,直线AB的方程为+=1,即3x-4y-12=0,圆心C到直线AB的距离d=,又|AB|==5,所以△ABP的面积的最小值为×5×=。

    答案 B
    2.(方向2)已知实数x,y满足(x-2)2+(y-1)2=1,则z=的最大值与最小值分别为________和________。
    解析 由题意,得表示过点A(0,-1)和圆(x-2)2+(y-1)2=1上的动点P(x,y)的直线的斜率。当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值。设切线方程为y=kx-1,即kx-y-1=0,则=1,解得k=,所以zmax=,zmin=。
    答案  
    3.(方向2)设点P(x,y)是圆:(x-3)2+y2=4上的动点,定点A(0,2),B(0,-2),则|+|的最大值为________。
    解析 由题意,知=(-x,2-y),=(-x,-2-y),所以+=(-2x,-2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,所以|+|==2。由圆的方程(x-3)2+y2=4,易知1≤x≤5,所以当x=5时,|+|的值最大,最大值为2=10。
    答案 10

    四点共圆问题的求解策略
    四点共圆问题本属于平面几何内容,是数学竞赛中的高频考点,近年来,圆锥曲线中的四点共圆问题也频频出现在高考试题中。
    【典例】 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|。
    (1)求抛物线C的方程;
    (2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程。
    【解】 (1)设Q(x0,4),代入y2=2px,得x0=,又P(0,4),所以|PQ|=。又|QF|=+x0=+,且|QF|=|PQ|,所以+=·,解得p=2(p=-2舍去),所以,抛物线C的方程为y2=4x。
    (2)因为A,M,B,N四点在同一圆上,弦AB的垂直平分线必过圆心,又MN垂直平分AB,所以MN是圆的直径,则MN的中点E就是这个圆的圆心,所以|AE|=|BE|=|MN|。

    依题意可知,直线l与坐标轴不垂直,故可设l的方程为x=my+1。
    由得y2-4my-4=0。
    设A(x1,y1),B(x2,y2),
    则y1+y2=4m,y1y2=-4。
    故线段AB的中点为D(2m2+1,2m),
    |AB|=|y1-y2|=4(m2+1)。
    又l′与l垂直,故可得直线l′的方程为x=-y+2m2+3,与y2=4x联立可得:
    y2+y-4(2m2+3)=0。
    设M(x3,y3),N(x4,y4),
    则y3+y4=-,y3y4=-8m2-12。
    故线段MN的中点为E,
    |MN|=|y3-y4|
    =。
    在直角△ADE中,由勾股定理得
    |AD|2+|DE|2=|AE|2,
    所以|AB|2+4|DE|2=|MN|2,即
    4(m2+1)2+2+2
    =,
    化简得m2-1=0,
    解得m=±1。
    故所求直线l的方程为x-y-1=0或x+y-1=0。

    本题中,MN的中点E就是A,M,B,N四点所在圆的圆心,故可将四点共圆的条件转化为圆心E到四点的距离相等,从而得到|AE|=|BE|=|MN|,进而把问题转化为先求线段AB的中点D、线段MN的中点E的坐标以及|AB|和|MN|,这是解析几何中的常规问题,通常是联立方程组后结合韦达定理来处理,但计算量较大。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章第三节 圆的方程 学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map