还剩9页未读,
继续阅读
所属成套资源:2020高考人教版A版理科数学数学一轮复习讲义
成套系列资料,整套一键下载
2020版高考数学(理)新创新一轮复习通用版讲义:第六章第四节数列求和
展开
第四节数列求和
[典例精析]
已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
[解] (1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=-=n.
a1=1也满足an=n,
故数列{an}的通项公式为an=n.
(2)由(1)知an=n,故bn=2n+(-1)nn.
记数列{bn}的前2n项和为T2n,
则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
记A=21+22+…+22n,B=-1+2-3+4-…+2n,
则A==22n+1-2,
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.
故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.
[解题技法]
若数列通项是几个数列通项的和或差的组合,如:等差加等比,等比加等比.对于这类数列求和,就是对数列通项进行分解,然后分别对每个数列进行求和.例如:an=bn+cn+…+hn,则k=k+k+…+k.
[过关训练]
1.已知数列{an}的通项公式是an=2n-3n,则其前20项和为( )
A.380- B.400-
C.420- D.440-
解析:选C 令数列{an}的前n项和为Sn,则S20=a1+a2+…+a20=2(1+2+…+20)-3=2×-3×=420-.
2.(2019·焦作模拟)已知{an}为等差数列,且a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4=88,且数列{bn-an}为等比数列.
(1)求数列{an}和{bn-an}的通项公式;
(2)求数列{bn}的前n项和Sn.
解:(1)设{an}的公差为d,
因为a2=3,{an}前4项的和为16,
所以解得
所以an=1+(n-1)×2=2n-1.
设{bn-an}的公比为q,
则b4-a4=(b1-a1)q3,
因为b1=4,b4=88,
所以q3===27,
解得q=3,
所以bn-an=(4-1)×3n-1=3n.
(2)由(1)得bn=3n+2n-1,
所以Sn=(3+32+33+…+3n)+(1+3+5+…+2n-1)
=+
=(3n-1)+n2
=+n2-.
[典例精析]
设数列{an}的前n项和为Sn,且2Sn=3an-1.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
[解] (1)由2Sn=3an-1,①
得2Sn-1=3an-1-1(n≥2),②
①-②,得2an=3an-3an-1,∴=3(n≥2),
又2S1=3a1-1,∴a1=1,
∴{an}是首项为1,公比为3的等比数列,
∴an=3n-1.
(2)由(1)得,bn=,
∴Tn=+++…+,
Tn=++…++,
两式相减,得Tn=+++…+-
=-=-,
∴Tn=-.
[解题技法]
如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.
[提醒]
(1)在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“Sn-qSn”的表达式.
(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
[过关训练]
1.数列,,,,…的前10项之和为________.
解析:因为S10=+++…+,①
所以S10=++…++.②
①-②得S10=+-
=+-
=--=,
所以S10==.
答案:
2.(2019·福州模拟)已知数列{an}的前n项和为Sn,且Sn=2an-1.
(1)证明:数列{an}是等比数列;
(2)设bn=(2n-1)an,求数列{bn}的前n项和Tn.
解:(1)证明:当n=1时,a1=S1=2a1-1,所以a1=1,
当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1),
所以an=2an-1,
所以数列{an}是以1为首项,2为公比的等比数列.
(2)由(1)知,an=2n-1,
所以bn=(2n-1)×2n-1,
所以Tn=1+3×2+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=1×2+3×22+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②,得-Tn=1+2×(21+22+…+2n-1)-(2n-1)×2n
=1+2×-(2n-1)×2n
=(3-2n)×2n-3,
所以Tn=(2n-3)×2n+3.
[考法全析]
考法(一) 形如an=(k为非零常数)型
[例1] (2018·福州模拟)已知数列{an}中,a1=1,a2=2,an+1=3an-2an-1(n≥2,n∈N*).设bn=an+1-an.
(1)证明:数列{bn}是等比数列;
(2)设cn=,求数列{cn}的前n项和Sn.
[解] (1)证明:因为an+1=3an-2an-1(n≥2,n∈N*),bn=an+1-an,
所以====2,
又b1=a2-a1=2-1=1,
所以数列{bn}是以1为首项,2为公比的等比数列.
(2)由(1)知bn=1×2n-1=2n-1,
因为cn=,
所以cn==,
所以Sn=c1+c2+…+cn===.
考法(二) 形如(k为非零常数)型
[例2] 已知函数f(x)=xα的图象过点(4,2),令an=,n∈N*.记数列{an}的前n项和为Sn,则S2 018=( )
A.-1 B.-1
C.-1 D.+1
[解析] 由f(4)=2,可得4α=2,解得α=,
则f(x)=.
所以an===-,
所以S2 018=a1+a2+a3+…+a2 018=(-)+(-)+(-)+…+(-)=-1.
[答案] C
[规律探求]
看个性
考法(一)数列的通项公式形如an=时,可转化为an=,此类数列适合使用裂项相消法求和.
考法(二)数列的通项公式形如an=时,可转化为an=(-),此类数列适合使用裂项相消法求和
找共性
裂项相消法求和的实质和解题关键
裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.
(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.
(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项
[过关训练]
1.(2017·全国卷Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则=________.
解析:设等差数列{an}的首项为a1,公差为d,
依题意有解得
所以Sn=,==2,
因此=2=.
答案:
2.正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.求证:对于任意的n∈N*,都有Tn<.
解:(1)由S-(n2+n-1)Sn-(n2+n)=0,
得[Sn-(n2+n)](Sn+1)=0.
由于{an}是正项数列,所以Sn>0,Sn=n2+n.
于是a1=S1=2,
当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
综上,数列{an}的通项公式为an=2n.
(2)证明:由于an=2n,
故bn===.
故Tn=
+=<=.
一、题点全面练
1.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( )
A.15 B.12
C.-12 D.-15
解析:选A a1+a2+a3+a4+a5+a6+a7+a8+a9+a10=-1+4-7+10-13+16-19+22-25+28=5×3=15.
2.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于( )
A.76 B.78
C.80 D.82
解析:选B 由已知an+1+(-1)nan=2n-1,得an+2+(-1)n+1an+1=2n+1,得an+2+an=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.故选B.
3.(2019·开封调研)已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2 018等于( )
A.22 018-1 B.3×21 009-3
C.3×21 009-1 D.3×21 008-2
解析:选B ∵a1=1,a2==2,
又==2,
∴=2.
∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
∴S2 018=a1+a2+a3+a4+a5+a6+…+a2 017+a2 018
=(a1+a3+a5+…+a2 017)+(a2+a4+a6+…+a2 018)
=+=3×21 009-3.故选B.
4.(2019·郑州质量预测)已知数列{an}的前n项和为Sn,a1=1,a2=2,且an+2-2an+1+an=0(n∈N*),记Tn=++…+(n∈N*),则T2 018=( )
A. B.
C. D.
解析:选C 由an+2-2an+1+an=0(n∈N*),可得an+2+an=2an+1,所以数列{an}为等差数列,公差d=a2-a1=2-1=1,通项公式an=a1+(n-1)×d=1+n-1=n,则其前n项和Sn==,所以==2,Tn=++…+=2=2=,故T2 018==,故选C.
5.已知数列{an},若an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.已知数列{bn}为“凸数列”,且b1=1,b2=-2,则数列{bn}的前2 019项和为( )
A.5 B.-4
C.0 D.-2
解析:选B 由“凸数列”的定义及b1=1,b2=-2,得b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,∴数列{bn}是周期为6的周期数列,且b1+b2+b3+b4+b5+b6=0,于是数列{bn}的前2 019项和等于b1+b2+b3=-4.
6.(2019·肇庆模拟)正项数列{an}中,满足a1=1,a2=,= (n∈N*),那么a1·a3+a2·a4+a3·a5+…+an·an+2=________.
解析:由= (n∈N*),
可得a=anan+2,
∴数列{an}为等比数列.
∵a1=1,a2=,∴q=,∴an=,
∴an·an+2=·=,∴a1·a3=,
∴a1·a3+a2·a4+a3·a5+…+an·an+2
==.
答案:
7.(2019·合肥模拟)数列{an}满足:a1=,且an+1=(n∈N*),则数列{an}的前n项和Sn=________.
解析:an+1=,两边同时取倒数得==+,整理得=+3,所以-=3,所以数列是以=3为首项,3为公差的等差数列,所以=3n,所以an=,所以数列{an}是常数列,所以Sn=.
答案:
8.(2019·益阳、湘潭调研)已知Sn为数列{an}的前n项和,若a1=2且Sn+1=2Sn,设bn=log2an,则++…+的值是________.
解析:由Sn+1=2Sn可知,数列{Sn}是首项为S1=a1=2,公比为2的等比数列,所以Sn=2n.当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1,bn=log2an=当n≥2时,==-,所以++…+=1+1-+-+…+-=2-=.
答案:
9.(2019·广州调研)已知数列{an}满足a1+4a2+42a3+…+4n-1an=(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bnbn+1}的前n项和Tn.
解:(1)当n=1时,a1=.
因为a1+4a2+42a3+…+4n-2an-1+4n-1an=,①
所以a1+4a2+42a3+…+4n-2an-1=(n≥2,n∈N*),②
①-②得4n-1an=(n≥2,n∈N*),
所以an=(n≥2,n∈N*).
当n=1时也适合上式,故an=(n∈N*).
(2)由(1)得bn==,
所以bnbn+1==,
故Tn=
=
=.
10.(2019·石家庄质检)已知数列{an}满足:a1=1,an+1=an+.
(1)设bn=,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn.
解:(1)由an+1=an+,可得=+,
又bn=,∴bn+1-bn=,
由a1=1,得b1=1,
累加可得(b2-b1)+(b3-b2)+…+(bn-bn-1)
=++…+,
即bn-b1==1-,
∴bn=2-.
(2)由(1)可知an=2n-,
设数列的前n项和为Tn,
则Tn=+++…+,①
Tn=+++…+,②
①-②得Tn=+++…+-
=-=2-,
∴Tn=4-.
易知数列{2n}的前n项和为n(n+1),
∴Sn=n(n+1)+-4.
二、专项培优练
(一)易错专练——不丢怨枉分
1.1-4+9-16+…+(-1)n+1n2=( )
A. B.-
C.(-1)n+1 D.以上均不正确
解析:选C 当n为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-=-;当n为奇数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-[2(n-1)-1]+n2=-+n2=.综上可得,原式=(-1)n+1.
2.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a2 018=( )
A.-2 017 B.-2 018
C.2 017 D.2 018
解析:选D 当n为奇数时,n+1为偶数,则an=n2-(n+1)2=-2n-1,所以a1+a3+a5+…+a2 017=-(3+7+11+…+4 035).当n为偶数时,n+1为奇数,则an=-n2+(n+1)2=2n+1,所以a2+a4+a6+…+a2 018=5+9+13+…+4 037.所以a1+a2+a3+…+a2 018=(5-3)+(9-7)+(13-11)+…+(4 037-4 035)=2×1 009=2 018,故选D.
3.已知数列{an}的前n项和Sn=n2-6n,则数列{|an|}的前n项和Tn等于( )
A.6n-n2 B.n2-6n+18
C. D.
解析:选C 由Sn=n2-6n得{an}是等差数列,且首项为-5,公差为2,∴an=-5+(n-1)×2=2n-7,∴当n≤3时,an<0,Tn=(-a1)+(-a2)+(-a3)=-Sn=6n-n2.
当n>3时,an>0,Tn=(-a1)+(-a2)+(-a3)+a4+…+an=Sn-2S3=n2-6n+18.
∴Tn=
(二)难点专练——适情自主选
4.已知数列{an}为等差数列且公差d≠0,{an}的部分项组成等比数列{bn},其中bn=akn,若k1=1,k2=5,k3=17,
(1)求kn;
(2)若a1=2,求{ankn}的前n项和Sn.
解:(1)由k1=1,k2=5,k3=17,知a1(a1+16d)=(a1+4d)2,得a1=2d.
从而ak=(k+1)d,则===3,
即(kn+1+1)=3(kn+1),所以数列{kn+1}是首项为k1+1=2,公比为3的等比数列,所以kn+1=2·3n-1,所以kn=2·3n-1-1.
(2)由a1=2,得d=1,
则an=n+1,ankn=2(n+1)·3n-1-(n+1),
所以Sn=2[2+3·3+…+(n+1)3n-1]-,
令Tn=2+3·3+…+(n+1)3n-1,
则3Tn=2·3+3·32+…+(n+1)3n,
两式相减,得-2Tn=2+3+32+…+3n-1-(n+1)3n=1+-(n+1)3n.
所以Tn=-+=,
Sn=.
5.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lg Tn,n≥1.
(1)求数列{an}的通项公式;
(2)设bn=tan antan an+1,求数列{bn}的前n项和Sn.
解:(1)设t1,t2,…,tn+2构成等比数列,其中t1=1,tn+2=100,则Tn=t1·t2·…·tn+1·tn+2,①
Tn=tn+2·tn+1·…·t2·t1,②
由①×②并利用ti·tn+3-i=100(1≤i≤n+2),得T=100n+2,所以an=lg Tn=n+2.
(2)由题意和(1)中计算结果,知bn=tan(n+2)tan(n+3),n≥1,
另一方面,由tan 1=tan[(k+1)-k]
=,
得tan(k+1)tan k=-1,
所以Sn=k=an(k+1)tan k
=
=-n.
[典例精析]
已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
[解] (1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=-=n.
a1=1也满足an=n,
故数列{an}的通项公式为an=n.
(2)由(1)知an=n,故bn=2n+(-1)nn.
记数列{bn}的前2n项和为T2n,
则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
记A=21+22+…+22n,B=-1+2-3+4-…+2n,
则A==22n+1-2,
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.
故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.
[解题技法]
若数列通项是几个数列通项的和或差的组合,如:等差加等比,等比加等比.对于这类数列求和,就是对数列通项进行分解,然后分别对每个数列进行求和.例如:an=bn+cn+…+hn,则k=k+k+…+k.
[过关训练]
1.已知数列{an}的通项公式是an=2n-3n,则其前20项和为( )
A.380- B.400-
C.420- D.440-
解析:选C 令数列{an}的前n项和为Sn,则S20=a1+a2+…+a20=2(1+2+…+20)-3=2×-3×=420-.
2.(2019·焦作模拟)已知{an}为等差数列,且a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4=88,且数列{bn-an}为等比数列.
(1)求数列{an}和{bn-an}的通项公式;
(2)求数列{bn}的前n项和Sn.
解:(1)设{an}的公差为d,
因为a2=3,{an}前4项的和为16,
所以解得
所以an=1+(n-1)×2=2n-1.
设{bn-an}的公比为q,
则b4-a4=(b1-a1)q3,
因为b1=4,b4=88,
所以q3===27,
解得q=3,
所以bn-an=(4-1)×3n-1=3n.
(2)由(1)得bn=3n+2n-1,
所以Sn=(3+32+33+…+3n)+(1+3+5+…+2n-1)
=+
=(3n-1)+n2
=+n2-.
[典例精析]
设数列{an}的前n项和为Sn,且2Sn=3an-1.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
[解] (1)由2Sn=3an-1,①
得2Sn-1=3an-1-1(n≥2),②
①-②,得2an=3an-3an-1,∴=3(n≥2),
又2S1=3a1-1,∴a1=1,
∴{an}是首项为1,公比为3的等比数列,
∴an=3n-1.
(2)由(1)得,bn=,
∴Tn=+++…+,
Tn=++…++,
两式相减,得Tn=+++…+-
=-=-,
∴Tn=-.
[解题技法]
如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.
[提醒]
(1)在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“Sn-qSn”的表达式.
(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
[过关训练]
1.数列,,,,…的前10项之和为________.
解析:因为S10=+++…+,①
所以S10=++…++.②
①-②得S10=+-
=+-
=--=,
所以S10==.
答案:
2.(2019·福州模拟)已知数列{an}的前n项和为Sn,且Sn=2an-1.
(1)证明:数列{an}是等比数列;
(2)设bn=(2n-1)an,求数列{bn}的前n项和Tn.
解:(1)证明:当n=1时,a1=S1=2a1-1,所以a1=1,
当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1),
所以an=2an-1,
所以数列{an}是以1为首项,2为公比的等比数列.
(2)由(1)知,an=2n-1,
所以bn=(2n-1)×2n-1,
所以Tn=1+3×2+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=1×2+3×22+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②,得-Tn=1+2×(21+22+…+2n-1)-(2n-1)×2n
=1+2×-(2n-1)×2n
=(3-2n)×2n-3,
所以Tn=(2n-3)×2n+3.
[考法全析]
考法(一) 形如an=(k为非零常数)型
[例1] (2018·福州模拟)已知数列{an}中,a1=1,a2=2,an+1=3an-2an-1(n≥2,n∈N*).设bn=an+1-an.
(1)证明:数列{bn}是等比数列;
(2)设cn=,求数列{cn}的前n项和Sn.
[解] (1)证明:因为an+1=3an-2an-1(n≥2,n∈N*),bn=an+1-an,
所以====2,
又b1=a2-a1=2-1=1,
所以数列{bn}是以1为首项,2为公比的等比数列.
(2)由(1)知bn=1×2n-1=2n-1,
因为cn=,
所以cn==,
所以Sn=c1+c2+…+cn===.
考法(二) 形如(k为非零常数)型
[例2] 已知函数f(x)=xα的图象过点(4,2),令an=,n∈N*.记数列{an}的前n项和为Sn,则S2 018=( )
A.-1 B.-1
C.-1 D.+1
[解析] 由f(4)=2,可得4α=2,解得α=,
则f(x)=.
所以an===-,
所以S2 018=a1+a2+a3+…+a2 018=(-)+(-)+(-)+…+(-)=-1.
[答案] C
[规律探求]
看个性
考法(一)数列的通项公式形如an=时,可转化为an=,此类数列适合使用裂项相消法求和.
考法(二)数列的通项公式形如an=时,可转化为an=(-),此类数列适合使用裂项相消法求和
找共性
裂项相消法求和的实质和解题关键
裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.
(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.
(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项
[过关训练]
1.(2017·全国卷Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则=________.
解析:设等差数列{an}的首项为a1,公差为d,
依题意有解得
所以Sn=,==2,
因此=2=.
答案:
2.正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.求证:对于任意的n∈N*,都有Tn<.
解:(1)由S-(n2+n-1)Sn-(n2+n)=0,
得[Sn-(n2+n)](Sn+1)=0.
由于{an}是正项数列,所以Sn>0,Sn=n2+n.
于是a1=S1=2,
当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
综上,数列{an}的通项公式为an=2n.
(2)证明:由于an=2n,
故bn===.
故Tn=
+=<=.
一、题点全面练
1.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( )
A.15 B.12
C.-12 D.-15
解析:选A a1+a2+a3+a4+a5+a6+a7+a8+a9+a10=-1+4-7+10-13+16-19+22-25+28=5×3=15.
2.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于( )
A.76 B.78
C.80 D.82
解析:选B 由已知an+1+(-1)nan=2n-1,得an+2+(-1)n+1an+1=2n+1,得an+2+an=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.故选B.
3.(2019·开封调研)已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2 018等于( )
A.22 018-1 B.3×21 009-3
C.3×21 009-1 D.3×21 008-2
解析:选B ∵a1=1,a2==2,
又==2,
∴=2.
∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
∴S2 018=a1+a2+a3+a4+a5+a6+…+a2 017+a2 018
=(a1+a3+a5+…+a2 017)+(a2+a4+a6+…+a2 018)
=+=3×21 009-3.故选B.
4.(2019·郑州质量预测)已知数列{an}的前n项和为Sn,a1=1,a2=2,且an+2-2an+1+an=0(n∈N*),记Tn=++…+(n∈N*),则T2 018=( )
A. B.
C. D.
解析:选C 由an+2-2an+1+an=0(n∈N*),可得an+2+an=2an+1,所以数列{an}为等差数列,公差d=a2-a1=2-1=1,通项公式an=a1+(n-1)×d=1+n-1=n,则其前n项和Sn==,所以==2,Tn=++…+=2=2=,故T2 018==,故选C.
5.已知数列{an},若an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.已知数列{bn}为“凸数列”,且b1=1,b2=-2,则数列{bn}的前2 019项和为( )
A.5 B.-4
C.0 D.-2
解析:选B 由“凸数列”的定义及b1=1,b2=-2,得b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,∴数列{bn}是周期为6的周期数列,且b1+b2+b3+b4+b5+b6=0,于是数列{bn}的前2 019项和等于b1+b2+b3=-4.
6.(2019·肇庆模拟)正项数列{an}中,满足a1=1,a2=,= (n∈N*),那么a1·a3+a2·a4+a3·a5+…+an·an+2=________.
解析:由= (n∈N*),
可得a=anan+2,
∴数列{an}为等比数列.
∵a1=1,a2=,∴q=,∴an=,
∴an·an+2=·=,∴a1·a3=,
∴a1·a3+a2·a4+a3·a5+…+an·an+2
==.
答案:
7.(2019·合肥模拟)数列{an}满足:a1=,且an+1=(n∈N*),则数列{an}的前n项和Sn=________.
解析:an+1=,两边同时取倒数得==+,整理得=+3,所以-=3,所以数列是以=3为首项,3为公差的等差数列,所以=3n,所以an=,所以数列{an}是常数列,所以Sn=.
答案:
8.(2019·益阳、湘潭调研)已知Sn为数列{an}的前n项和,若a1=2且Sn+1=2Sn,设bn=log2an,则++…+的值是________.
解析:由Sn+1=2Sn可知,数列{Sn}是首项为S1=a1=2,公比为2的等比数列,所以Sn=2n.当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1,bn=log2an=当n≥2时,==-,所以++…+=1+1-+-+…+-=2-=.
答案:
9.(2019·广州调研)已知数列{an}满足a1+4a2+42a3+…+4n-1an=(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bnbn+1}的前n项和Tn.
解:(1)当n=1时,a1=.
因为a1+4a2+42a3+…+4n-2an-1+4n-1an=,①
所以a1+4a2+42a3+…+4n-2an-1=(n≥2,n∈N*),②
①-②得4n-1an=(n≥2,n∈N*),
所以an=(n≥2,n∈N*).
当n=1时也适合上式,故an=(n∈N*).
(2)由(1)得bn==,
所以bnbn+1==,
故Tn=
=
=.
10.(2019·石家庄质检)已知数列{an}满足:a1=1,an+1=an+.
(1)设bn=,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn.
解:(1)由an+1=an+,可得=+,
又bn=,∴bn+1-bn=,
由a1=1,得b1=1,
累加可得(b2-b1)+(b3-b2)+…+(bn-bn-1)
=++…+,
即bn-b1==1-,
∴bn=2-.
(2)由(1)可知an=2n-,
设数列的前n项和为Tn,
则Tn=+++…+,①
Tn=+++…+,②
①-②得Tn=+++…+-
=-=2-,
∴Tn=4-.
易知数列{2n}的前n项和为n(n+1),
∴Sn=n(n+1)+-4.
二、专项培优练
(一)易错专练——不丢怨枉分
1.1-4+9-16+…+(-1)n+1n2=( )
A. B.-
C.(-1)n+1 D.以上均不正确
解析:选C 当n为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-=-;当n为奇数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-[2(n-1)-1]+n2=-+n2=.综上可得,原式=(-1)n+1.
2.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a2 018=( )
A.-2 017 B.-2 018
C.2 017 D.2 018
解析:选D 当n为奇数时,n+1为偶数,则an=n2-(n+1)2=-2n-1,所以a1+a3+a5+…+a2 017=-(3+7+11+…+4 035).当n为偶数时,n+1为奇数,则an=-n2+(n+1)2=2n+1,所以a2+a4+a6+…+a2 018=5+9+13+…+4 037.所以a1+a2+a3+…+a2 018=(5-3)+(9-7)+(13-11)+…+(4 037-4 035)=2×1 009=2 018,故选D.
3.已知数列{an}的前n项和Sn=n2-6n,则数列{|an|}的前n项和Tn等于( )
A.6n-n2 B.n2-6n+18
C. D.
解析:选C 由Sn=n2-6n得{an}是等差数列,且首项为-5,公差为2,∴an=-5+(n-1)×2=2n-7,∴当n≤3时,an<0,Tn=(-a1)+(-a2)+(-a3)=-Sn=6n-n2.
当n>3时,an>0,Tn=(-a1)+(-a2)+(-a3)+a4+…+an=Sn-2S3=n2-6n+18.
∴Tn=
(二)难点专练——适情自主选
4.已知数列{an}为等差数列且公差d≠0,{an}的部分项组成等比数列{bn},其中bn=akn,若k1=1,k2=5,k3=17,
(1)求kn;
(2)若a1=2,求{ankn}的前n项和Sn.
解:(1)由k1=1,k2=5,k3=17,知a1(a1+16d)=(a1+4d)2,得a1=2d.
从而ak=(k+1)d,则===3,
即(kn+1+1)=3(kn+1),所以数列{kn+1}是首项为k1+1=2,公比为3的等比数列,所以kn+1=2·3n-1,所以kn=2·3n-1-1.
(2)由a1=2,得d=1,
则an=n+1,ankn=2(n+1)·3n-1-(n+1),
所以Sn=2[2+3·3+…+(n+1)3n-1]-,
令Tn=2+3·3+…+(n+1)3n-1,
则3Tn=2·3+3·32+…+(n+1)3n,
两式相减,得-2Tn=2+3+32+…+3n-1-(n+1)3n=1+-(n+1)3n.
所以Tn=-+=,
Sn=.
5.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lg Tn,n≥1.
(1)求数列{an}的通项公式;
(2)设bn=tan antan an+1,求数列{bn}的前n项和Sn.
解:(1)设t1,t2,…,tn+2构成等比数列,其中t1=1,tn+2=100,则Tn=t1·t2·…·tn+1·tn+2,①
Tn=tn+2·tn+1·…·t2·t1,②
由①×②并利用ti·tn+3-i=100(1≤i≤n+2),得T=100n+2,所以an=lg Tn=n+2.
(2)由题意和(1)中计算结果,知bn=tan(n+2)tan(n+3),n≥1,
另一方面,由tan 1=tan[(k+1)-k]
=,
得tan(k+1)tan k=-1,
所以Sn=k=an(k+1)tan k
=
=-n.
相关资料
更多