搜索
    上传资料 赚现金
    英语朗读宝

    2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3

    2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3第1页
    2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3第2页
    2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3第3页
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3

    展开

    §2.3 函数的奇偶性与周期性
    最新考纲
    考情考向分析
    1.结合具体函数,了解函数奇偶性的含义.
    2.会运用函数图象理解和研究函数的奇偶性.
    3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
    以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.



    1.函数的奇偶性
    奇偶性
    定义
    图象特点
    奇函数
    设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数
    关于坐标原点对称
    偶函数
    设函数y=g(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数
    关于y轴对称

    2.周期性
    (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
    (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
    概念方法微思考
    1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有什么结论?
    提示 在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
    2.已知函数f(x)满足下列条件,你能得到什么结论?
    (1)f(x+a)=-f(x)(a≠0).
    (2)f(x+a)=(a≠0).
    (3)f(x+a)=f(x+b)(a≠b).
    提示 (1)T=2|a|;(2)T=2|a|;(3)T=|a-b|.

    题组一 思考辨析
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)函数y=x2,x∈(0,+∞)是偶函数.( × )
    (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( × )
    (3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √ )
    题组二 教材改编
    2.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x(1+x),则f(-1)=______.
    答案 -2
    解析 f(1)=1×2=2,又f(x)为奇函数,
    ∴f(-1)=-f(1)=-2.
    3.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f =______.
    答案 1
    解析 f =f =-4×2+2=1.
    4.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map