![2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.4第1页](http://www.enxinlong.com/img-preview/3/3/5748566/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.4第2页](http://www.enxinlong.com/img-preview/3/3/5748566/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.4第3页](http://www.enxinlong.com/img-preview/3/3/5748566/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020高考人教A版文科数学一轮讲义
2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.4
展开
§2.4 幂函数与二次函数
最新考纲
考情考向分析
1.了解幂函数的概念.
2.结合函数y=x,y=x2,y=x3,y=,y=的图象,了解它们的变化情况.
3.理解并掌握二次函数的定义、图象及性质.
4.能用二次函数、方程、不等式之间的关系解决简单问题.
以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为选择、填空题,中档难度.
1.幂函数
(1)幂函数的定义
一般地,形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.
(2)常见的五种幂函数的图象和性质比较
函数
y=x
y=x2
y=x3
y=
y=x-1
图象
性
质
定义域
R
R
R
{x|x≥0}
{x|x≠0}
值域
R
{y|y≥0}
R
{y|y≥0}
{y|y≠0}
奇偶性
奇函数
偶函数
奇函数
非奇非偶函数
奇函数
单调性
在R上单调递增
在(-∞,0]上单调递减;在(0,+∞)上单调递增
在R上单调递增
在[0,+∞)上单调递增
在(-∞,0)和(0,+∞)上单调递减
公共点
(1,1)
2.二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a0且Δ≤0.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)二次函数y=ax2+bx+c(a≠0),x∈[a,b]的最值一定是.( × )
(2)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.
( √ )
(3)函数y=是幂函数.( × )
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ )
(5)当n0,f(0)>0,而f(m)c>b>a B.a>b>c>d
C.d>c>a>b D.a>b>d>c
答案 B
解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x轴,由题图知a>b>c>d,故选B.
3.已知幂函数f(x)=(n2+2n-2)(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( )
A.-3 B.1 C.2 D.1或2
答案 B
解析 由于f(x)为幂函数,所以n2+2n-2=1,解得n=1或n=-3,经检验只有n=1符合题意,故选B.
4.(2018·阜新模拟)若(a+1)0或3-2a