还剩27页未读,
继续阅读
所属成套资源:2020高考物理一轮复习文档
成套系列资料,整套一键下载
2020年高考物理一轮复习文档:第10章磁场第49讲 学案
展开
第49讲 带电粒子在组合场和复合场中的运动
考点一 带电粒子在组合场中的运动
1.组合场:电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现。不同的磁场区域组合在一起也叫组合场。
2.分析思路
(1)划分过程:将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。
(2)找关键:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键。
(3)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题。
3.组合场中的两种典型偏转
(2017·天津高考)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问:
(1)粒子到达O点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比。
解析 (1)在电场中,粒子做类平抛运动,设Q点到x轴距离为L,到y轴距离为2L,粒子的加速度为a,运动时间为t,有
2L=v0t①
L=at2②
设粒子到达O点时沿y轴方向的分速度为vy
vy=at③
设粒子到达O点时速度方向与x轴正方向夹角为α,有
tanα=④
联立①②③④式得
α=45°⑤
即粒子到达O点时速度方向与x轴正方向成45°角斜向上。
设粒子到达O点时速度大小为v,由运动的合成有
v= ⑥
联立①②③⑥式得
v=v0⑦
(2)设电场强度为E,粒子所带电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得
F=ma⑧
又F=qE⑨
设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有
qvB=m⑩
由几何关系可知
R=L⑪
联立①②⑦⑧⑨⑩⑪式得
=。
答案 (1)v0,速度方向与x轴正方向成45°角斜向上
(2)
方法感悟
带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟磁偏转两种运动有效组合在一起。区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键。当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成;前后两段过程的联系是带电粒子在边界的速度,前一过程的末速度就是后一过程的初速度。
如图所示,一带电粒子垂直射入匀强电场,经电场偏转后从磁场的左边界上M点进入垂直纸面向外的匀强磁场中,最后从磁场的左边界上的N点离开磁场。已知带电粒子的比荷=3.2×109 C/kg,电场强度E=200 V/m,M、N间距MN=1 cm,金属板长L=25 cm,粒子的初速度v0=4×105 m/s,带电粒子的重力忽略不计,求:
(1)粒子射出电场时的运动方向与初速度v0的夹角θ;
(2)磁感应强度B的大小。
答案 (1)45° (2)2.5×10-2 T
解析 (1)由牛顿第二定律有qE=ma
粒子在电场中水平方向做匀速直线运动,
L=v0t
粒子在竖直方向做初速度为零的匀加速运动,射出电场时的竖直分速度vy=at
速度偏转角的正切值tanθ=
由以上各式代入数据解得θ=45°。
(2)粒子射出电场时的速度大小为:
v=
在磁场中洛伦兹力提供向心力:
Bqv=m
由几何关系得MN=r
代入数据解得B=2.5×10-2 T。
考点二 带电粒子在复合场中的运动
1.复合场存在形式有以下三种
(1)洛伦兹力、重力并存
①若重力和洛伦兹力平衡,则带电体做匀速直线运动。
②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,只有重力做功,故机械能守恒,由此可求解问题。
(2)静电力、洛伦兹力并存(不计重力的微观粒子)
①若静电力和洛伦兹力平衡,则带电体做匀速直线运动。
②若静电力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题。
(3)静电力、洛伦兹力、重力并存
①若三力平衡,一定做匀速直线运动。
②若重力与静电力平衡,一定做匀速圆周运动。
③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题。
2.带电粒子在叠加场中有约束情况下的运动
带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解。
3.带电粒子在复合场中运动的分析方法
如图所示,区域Ⅰ内有与水平方向成45°角的匀强电场,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场和匀强电场,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下。一质量为m、电荷量为q的微粒在区域Ⅰ左边界的P点由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g,求:
(1)区域Ⅰ和区域Ⅱ内匀强电场的电场强度E1、E2的大小;
(2)区域Ⅱ内匀强磁场的磁感应强度B的大小;
(3)微粒从P运动到Q的时间。
解析 (1)微粒在区域Ⅰ内水平向右做直线运动,则在竖直方向上,有
qE1sin45°=mg
解得E1=
微粒在区域Ⅱ内做匀速圆周运动,则在竖直方向上,有
mg=qE2
解得E2=。
(2)设微粒在区域Ⅰ内水平向右做直线运动时加速度为a,离开区域Ⅰ时速度为v,在区域Ⅱ内做匀速圆周运动的轨道半径为R,则
a==g
v2=2ad1
Rsin60°=d2
qvB=m
解得B= 。
(3)微粒在区域Ⅰ内做匀加速直线运动,t1=
在区域Ⅱ内做匀速圆周运动的圆心角为60°,
而T=
则t2==
解得t=t1+t2=+ 。
答案 (1) (2)
(3) +
方法感悟
关于是否考虑粒子重力的三种情况
(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与静电力或磁场力相比太小,可以忽略;而对于一些宏观带电小物体,如带电小球、液滴、尘埃等一般应当考虑其重力。
(2)在题目中有明确说明是否要考虑重力的,按题目要求处理。
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C。在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h(h=0.4 m)的区域有磁感应强度大小也为B的垂直于纸面向里的匀强磁场。一个电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限。已知重力加速度g取10 m/s2。
(1)求油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;
(2)求油滴在P点得到的初速度大小;
(3)求油滴在第一象限运动的时间。
答案 (1)1∶1∶ 负电荷 (2)4 m/s (3)0.828 s
解析 (1)对油滴受力分析,如图所示,可知油滴带负电荷。
设油滴质量为m,由平衡条件得
mg∶qE∶F=1∶1∶。
(2)由第(1)问得
F=qvB=qE
解得v==4 m/s。
(3)进入第一象限,电场力和重力大小相等、方向相反,油滴受力平衡,油滴先做匀速直线运动,进入y>h的区域后做匀速圆周运动,轨迹如图所示,最后从x轴上的N点离开第一象限。
油滴由O到A做匀速直线运动的位移为
x1==h
重力与电场力平衡,有mg=Eq
其运动时间t1==0.1 s
由几何关系和圆周运动的周期公式T=知,油滴由A到C做圆周运动的时间t2=T=0.628 s
由对称性知油滴从C到N运动的时间t3=t1
油滴在第一象限运动的总时间t=t1+t2+t3=2×0.1 s+0.628 s=0.828 s。
考点三 带电粒子在交变电磁场中的运动
1.带电粒子在交变电、磁场中的运动是指电场、磁场发生周期性变化,要仔细分析并确定各场的变化特点及相应的时间,其变化周期一般与粒子在电场或磁场中的运动周期有一定的对应关系,应抓住变化周期与运动周期之间的联系作为解题的突破口。
2.解决带电粒子在交变电磁场中的运动问题的基本思路
如图a所示的xOy平面处于变化的匀强电场和匀强磁场中,电场强度E和磁感应强度B随时间做周期性变化的图象如图b所示,y轴正方向为E的正方向,垂直于纸面向里为B的正方向。t=0时刻,带负电粒子P(重力不计)由原点O以速度v0沿y轴正方向射出,它恰能沿一定轨道做周期性运动。v0、E0和t0为已知量,图b中=,在0~t0时间内粒子P第一次离x轴最远时的坐标为。求:
(1)粒子P的比荷;
(2)t=2t0时刻粒子P的位置;
(3)带电粒子在运动中距离原点O的最远距离L。
解析 (1)0~t0时间内粒子P在匀强磁场中做匀速圆周运动,当粒子所在位置的纵、横坐标相等时,粒子在磁场中恰好运动圆周,所以粒子P第一次离x轴的最远距离等于轨道半径R,即R=,①
又qv0B0=,②
代入=
解得=③
(2)设粒子P在磁场中运动的周期为T,则
T=,④
联立①④解得T=4t0,⑤
即粒子P运动圆周运动后磁场变为电场,粒子以速度v0垂直电场方向进入电场后做类平抛运动,设t0~2t0时间内水平位移和竖直位移分别为x1、y1,则
x1=v0t0,⑥
y1=at,⑦
其中加速度a=⑧
由③⑦⑧解得y1==R,因此t=2t0时刻粒子P的位置坐标为,如图中的b点所示。
(3)分析知,粒子P在2t0~3t0时间内,电场力产生的加速度方向沿y轴正方向,由对称关系知,在3t0时刻速度方向沿x轴正方向,水平位移x2=x1=v0t0,竖直位移y2=y1=R;在3t0~5t0时间内粒子P沿逆时针方向做匀速圆周运动,往复运动轨迹如图所示,由图可知,带电粒子在运动中距原点O的最远距离L即O、d间的距离,
L=2R+2x1,⑨
解得L=2v0t0。
答案 (1) (2) (3)2v0t0
方法感悟
认真阅读题目、分析题意、搞清题述物理状态及过程,并用简图(示意图、运动轨迹图、受力分析图、等效图等)将这些状态及过程表示出来,以展示题述物理情境、物理模型,使物理过程更为直观、物理特征更加明显,进而快速简便解题。
(2018·合肥模拟)如图甲所示,带正电粒子以水平速度v0从平行金属板MN间沿中线OO′连续射入电场中。MN板间接有如图乙所示的随时间t变化的电压UMN,两板间电场可看做是均匀的,且两板外无电场。紧邻金属板右侧有垂直纸面向里的匀强磁场B,分界线为CD,EF为屏幕。金属板间距为d,长度为l,磁场的宽度为d。已知:B=5×10-3 T,l=d=0.2 m,每个带正电粒子的速度v0=105 m/s,比荷为=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。试求:
(1)带电粒子进入磁场做圆周运动的最小半径;
(2)带电粒子射出电场时的最大速度;
(3)带电粒子打在屏幕上的范围。
答案 (1)0.2 m (2)1.414×105 m/s
(3)O′上方0.2 m到O′下方0.18 m的范围内
解析 (1)t=0时刻射入电场的带电粒子不被加速,进入磁场做圆周运动的半径最小。
粒子在磁场中运动时qv0B=
则带电粒子进入磁场做圆周运动的最小半径
rmin== m=0.2 m,其运动的径迹如图中曲线Ⅰ所示。
(2)设两板间电压为U1时,带电粒子刚好从极板边缘射出电场,则有=at2=·2
代入数据,解得U1=100 V
在电压不高于100 V时,带电粒子才能从两板间射出电场,电压高于100 V时,带电粒子打在极板上,不能从两板间射出。带电粒子刚好从极板边缘射出电场时,速度最大,设最大速度为vmax,则有
mv=mv+q·
解得vmax=×105 m/s=1.414×105 m/s。
(3)由第(1)问计算可知,t=0时刻射入电场的粒子在磁场中做圆周运动的半径rmin=d=0.2 m,径迹恰与屏幕相切,设切点为E,E为带电粒子打在屏幕上的最高点,
则=rmin=0.2 m
带电粒子射出电场的速度最大时,在磁场中做圆周运动的半径最大,打在屏幕上的位置最低。
设带电粒子以最大速度射出电场进入磁场中做圆周运动的半径为rmax,打在屏幕上的位置为F,运动径迹如图中曲线Ⅱ所示。
qvmaxB=
则带电粒子进入磁场做圆周运动的最大半径
rmax== m= m
由数学知识可得运动径迹的圆心必落在屏幕上,如图中Q点所示,并且Q点必与M板在同一水平线上。则
== m=0.1 m
带电粒子打在屏幕上的最低点为F,则
=rmax-= m=0.18 m
即带电粒子打在屏幕上O′上方0.2 m到O′下方0.18 m的范围内。
课后作业
[巩固强化练]
1.(多选)一个重力忽略不计的带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域。设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示。在图所示的几种情况中,可能出现的是( )
答案 AD
解析 A、C选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A图中粒子应逆时针运动,故A正确;C图中粒子应顺时针运动,故C错误;同理可以判断D正确,B错误。
2.如图所示,一束正离子从S点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E和磁场B的方向可能是(不计离子重力及其间相互作用力)( )
A.E向下,B向上 B.E向下,B向下
C.E向上,B向下 D.E向上,B向上
答案 A
解析 离子打在第Ⅲ象限,相对于原点O向下运动和向外运动,所以E向下,根据左手定则可知B向上,故A正确。
3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨道半径为R。已知电场的电场强度为E,方向竖直向下;磁场的磁感应强度为B,方向垂直纸面向里,不计空气阻力,设重力加速度为g,则( )
A.液滴带正电
B.液滴荷质比=
C.液滴顺时针运动
D.液滴运动的速度大小v=
答案 C
解析 液滴在重力场、匀强电场和匀强磁场组成的复合场中做匀速圆周运动,可知,液滴受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知液滴带负电,故A错误;由mg=qE解得=,故B错误;磁场方向垂直纸面向里,洛伦兹力的方向始终指向圆心,由左手定则可判断液滴的运动方向为顺时针,故C正确;液滴在洛伦兹力的作用下做匀速圆周运动的半径为R=,联立各式得v=,故D错误。
4. (多选)如图所示为一个质量为m、电荷量为+q的圆环,可在竖直面内水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中(不计空气阻力)。现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度—时间图象可能是图中的( )
答案 AD
解析 由左手定则可知,圆环所受洛伦兹力竖直向上,如果恰好qv0B=mg,圆环与杆间无弹力,不受摩擦力,圆环将以v0做匀速直线运动,故A正确;如果qv0Bmg,则a=,随着v的减小a也减小,直到qvB=mg,以后做匀速直线运动,故D正确,B、C错误。
5. 如图所示,界面MN与水平地面之间有足够大的匀强磁场B和匀强电场E,磁感线和电场线都处在水平方向且互相垂直,E向右,B垂直纸面向里。在MN上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面。若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )
A.小球做匀变速曲线运动
B.小球的电势能保持不变
C.洛伦兹力对小球做正功
D.小球动能的增量等于其电势能和重力势能减少量的总和
答案 D
解析 带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,A错误;根据电势能公式Ep=qφ知只有带电小球竖直向下做直线运动时,电势能才保持不变,B错误;洛伦兹力的方向始终和速度方向垂直,所以洛伦兹力不做功,C错误;由动能定理可知:重力做正功,电场力也做正功,洛伦兹力不做功,它们的代数之和等于动能的增量,D正确。
6.如图所示,在x轴上方存在垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方存在垂直纸面向外的磁感应强度为的匀强磁场。一带负电的粒子从原点O以与x轴正方向成30°角斜向上射入磁场,且在x轴上方运动半径为R,则( )
A.粒子经偏转一定能回到原点O
B.粒子在x轴上方和下方两磁场中运动的轨迹半径之比为2∶1
C.粒子完成一次周期性运动的时间为
D.粒子第二次射入x轴上方磁场时,沿x轴前进3R
答案 D
解析 根据左手定则判断可知,粒子在第一象限和第四象限中所受的洛伦兹力方向不同,粒子在第一象限沿顺时针方向运动,而在第四象限沿逆时针方向运动,不可能回到原点O,故A错误;由r=,知粒子做圆周运动的轨迹半径与B成反比,则粒子在x轴上方和下方两磁场中运动的轨迹半径之比为1∶2,故B错误;粒子在第一象限内轨迹所对应的圆心角为60°,在第四象限内轨迹所对应的圆心角也为60°,粒子在第一象限做圆周运动的周期为T=,在一个周期内,粒子在第一象限运动的时间为t1=T=,同理,在第四象限运动的时间为t2=T′=·=,故粒子完成一次周期性运动的时间为t=t1+t2=,故C错误;根据几何知识得,粒子第二次射入x轴上方磁场时,沿x轴前进的距离为x=R+2R=3R,故D正确。
7.如图甲所示,两个平行正对的水平金属板XX′极板长L=0.2 m,板间距离d=0.2 m,在金属板右端竖直边界MN的右侧有一区域足够大的匀强磁场,磁感应强度B=5×10-3 T,方向垂直纸面向里。现将X′极板接地,X极板上电势φ随时间变化规律如图乙所示。现有带正电的粒子流以v0=105 m/s的速度沿水平中线OO′连续射入电场中,粒子的比荷=108 C/kg,重力可忽略不计,在每个粒子通过电场的极短时间内,电场可视为匀强电场(设两板外无电场)。求:
(1)带电粒子射出电场时的最大速率;
(2)粒子在磁场中运动的最长时间和最短时间之比;
(3)分别从O′点和距O′点下方=0.05 m处射入磁场的两个粒子,在MN上射出磁场时两出射点之间的距离。
答案 (1)×105 m/s (2)2∶1 (3)0.05 m
解析 (1)带电粒子在偏转电场中做类平抛运动,设所加电压为U1时,粒子从极板边缘射出:
水平方向:t==2×10-6 s
竖直方向:y=at2=,
其中a=,所以U1== V
当U> V时进入电场中的粒子将打到极板上,即在电压等于 V时进入的粒子射出电场时具有最大速率,
所以由动能定理得:q=mv-mv,
得:vt=×105 m/s。
(2)计算可得,从极板边缘射出的粒子射入磁场时的速度与水平方向的夹角为30°,从下极板边缘射出的粒子轨迹如图中a所示,磁场中轨迹所对的圆心角为240°,时间最长。
从上极板边缘射出的粒子轨迹如图中b所示,磁场中轨迹所对应的圆心角为120°,时间最短。
因为两粒子在磁场中运动的周期T=相同,所以粒子在磁场中运动的最长时间和最短时间之比为2∶1。
(3)如图所示,从O′点射入磁场的粒子速度为v0,它在磁场中的出射点与入射点间距为d1=2R1
又R1=,
所以d1=
设从距O′点下方=0.05 m处射入磁场的粒子速度与水平方向夹角为φ,
则它的速度为v2=,
它在磁场中的出射点与入射点间距为d2=2R2cosφ,
因为R2=,所以d2=。
所以两个粒子向上偏移的距离相等。
所以两粒子射出磁场的出射点间距仍为进入磁场时的间距,即=0.05 m。
8. 如图所示,在平面直角坐标系xOy中,第一象限内存在正交的匀强电场和匀强磁场,电场强度E1=40 N/C,方向沿y轴正方向;第四象限内存在一方向向左的匀强电场E2= N/C。一质量为m=2×10-3 kg带正电的小球,从点M(3.64 m,3.2 m)以v0=1 m/s的水平速度开始运动。已知小球在第一象限内做匀速圆周运动,从点P(2.04 m,0)进入第四象限后经过y轴上的点N(0,-2.28 m)(图中未标出)。(g取10 m/s2,sin37°=0.6,cos37°=0.8)求:
(1)匀强磁场的磁感应强度B;
(2)小球由P点运动至N点的时间。
答案 (1)2 T (2)0.6 s
解析 (1)由题意可知qE1=mg,得q=5×10-4 C
轨迹如图,Rcosθ=xM-xP,Rsinθ+R=yM
可得R=2 m,θ=37°
由qv0B=,得B=2 T。
(2)小球进入第四象限后受力分析如图,tanα==0.75即α=37°=θ。可知小球进入第四象限后所受电场力和重力的合力与速度方向垂直,则小球进入第四象限后做类平抛运动。
由几何关系可得lNQ=0.6 m
由lNQ=v0t,解得t=0.6 s。
[真题模拟练]
9.(2018·北京高考)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是( )
A.磁场和电场的方向 B.磁场和电场的强弱
C.粒子的电性和电量 D.粒子入射时的速度
答案 C
解析 由题可知,当带电粒子在复合场内做匀速直线运动时,即有Eq=qvB,则v=,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意需要对磁场与电场的方向以及强弱程度、粒子入射时速度都有要求,但是对粒子的电性和电量无要求,故C正确,A、B、D错误。
10.(2017·全国卷Ⅰ) 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里。三个带正电的微粒a、b、c电荷量相等,质量分别为ma、mb、mc。已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动。下列选项正确的是( )
A.ma>mb>mc B.mb>ma>mc
C.mc>ma>mb D.mc>mb>ma
答案 B
解析 设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即
mag=qE①
b在纸面内向右做匀速直线运动,三力平衡,则
mbg=qE+qvbB②
c在纸面内向左做匀速直线运动,三力平衡,则
mcg+qvcB=qE③
比较①②③式得:mb>ma>mc,选项B正确。
11.(2018·唐山第一学期统考) (多选)如图所示,M、N为两个同心金属圆环,半径分别为R1和R2,两圆环之间存在着沿金属环半径方向的电场,N环内存在着垂直于环面向外的匀强磁场,磁感应强度为B,N环上有均匀分布的6个小孔,从M环的内侧边缘由静止释放一质量为m,电荷量为+q的粒子(不计重力),经电场加速后通过小孔射入磁场,经过一段时间,粒子再次回到出发点,全程与金属环无碰撞。则M、N间电压U满足的条件是( )
A.U= B.U=
C.U= D.U=
答案 AC
解析 带电粒子由M内侧边缘运动到N环,由动能定理有qU=mv2,带电粒子进入N环内磁场,与金属环无碰撞,故粒子进入磁场后,应偏转或离开磁场,由几何关系可知,轨迹半径为r=R2tan=R2或r=R2tan=,则根据r=,联立解得U=或U=,选项A、C正确。
12.(2018·全国卷Ⅱ) 一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。
(1)定性画出该粒子在电磁场中运动的轨迹;
(2)求该粒子从M点射入时速度的大小;
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。
答案 (1)轨迹见解析 (2)
(3)
解析 (1)粒子运动的轨迹如图a所示。(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)
(2)粒子从电场下边界入射后在电场中做类平抛运动。设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图b),速度沿电场方向的分量为v1,根据牛顿第二定律有qE=ma①
式中q和m分别为粒子的电荷量和质量,由运动学公式有
v1=at②
l′=v0t③
v1=vcosθ④
粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB=⑤
由几何关系得l=2Rcosθ⑥
联立①②③④⑤⑥式得v0=⑦
(3)由运动学公式和题给数据得v1=v0cot⑧
联立①②③⑦⑧式得=⑨
设粒子由M点运动到N点所用的时间为t′,
则t′=2t+T⑩
式中T是粒子在磁场中做匀速圆周运动的周期,
T=⑪
由③⑦⑨⑩⑪式得t′=。
13.(2018·全国卷Ⅰ) 如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核H和一个氘核H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。H的质量为m,电荷量为q。不计重力。求:
(1)H第一次进入磁场的位置到原点O的距离;
(2)磁场的磁感应强度大小;
(3)H第一次离开磁场的位置到原点O的距离。
答案 (1)h (2) (3)(-1)h
解析 (1)H在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示。设H在电场中的加速度大小为a1,初速度大小为v1,它在电场中的运动时间为t1,第一次进入磁场的位置到原点O的距离为s1。由运动学公式有
s1=v1t1①
h=a1t②
由题给条件,H进入磁场时速度的方向与x轴正方向夹角θ1=60°。H进入磁场时速度的y分量的大小为a1t1=v1tanθ1③
联立以上各式得s1=h④
(2)H在电场中运动时,由牛顿第二定律有qE=ma1⑤
设H进入磁场时速度的大小为v1′,由速度合成法则有
v1′=⑥
设磁感应强度大小为B,H在磁场中运动的圆轨道半径为R1,由洛伦兹力公式和牛顿第二定律有
qv1′B=⑦
由几何关系得s1=2R1sinθ1⑧
联立以上各式得B= ⑨
(3)设H在电场中沿x轴正方向射出的速度大小为v2,在电场中的加速度大小为a2,由题给条件得
(2m)v=mv⑩
由牛顿第二定律有qE=2ma2⑪
设H第一次射入磁场时的速度大小为v2′,速度的方向与x轴正方向夹角为θ2,入射点到原点的距离为s2,在电场中运动的时间为t2。由运动学公式有
s2=v2t2⑫
h=a2t⑬
v2′=⑭
sinθ2=⑮
联立以上各式得s2=s1,θ2=θ1,v2′=v1′⑯
设H在磁场中做圆周运动的半径为R2,由⑦⑯式及粒子在匀强磁场中做圆周运动的半径公式得
R2==R1⑰
所以出射点在原点左侧。设H进入磁场的入射点到第一次离开磁场的出射点的距离为s2′,由几何关系有
s2′=2R2sinθ2⑱
联立④⑧⑯⑰⑱式得,H第一次离开磁场时的位置到原点O的距离为s2′-s2=(-1)h。
14.(2017·全国卷Ⅲ) 如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离。
答案 (1) (2)
解析 (1)在匀强磁场中,带电粒子做圆周运动,设在x≥0区域,圆周半径为R1;在x<0区域,圆周半径为R2,由洛伦兹力公式及牛顿第二定律得
qB0v0=m①
qλB0v0=m②
粒子速度方向转过180°时,所需时间t1为t1=③
粒子再转过180°时,所需时间t2为t2=④
联立①②③④式得,所求时间为
t0=t1+t2=⑤
(2)由几何关系及①②式得,所求距离为
d0=2(R1-R2)=。
15.(2018·开封模拟)如图所示,真空中有一以O点为圆心的圆形匀强磁场区域,半径为R=0.5 m,磁场垂直纸面向里。在y>R的区域存在沿-y方向的匀强电场,电场强度为E=1.0×105 V/m。在M点有一正粒子以速率v=1.0×106 m/s沿+x方向射入磁场,粒子穿出磁场进入电场,速度减小到0后又返回磁场,最终又从磁场离开。已知粒子的比荷为=1.0×107 C/kg,粒子重力不计。
(1)求圆形磁场区域磁感应强度的大小;
(2)求沿+x方向射入磁场的粒子,从进入磁场到再次穿出磁场所走过的路程。
答案 (1)0.2 T (2)(0.5π+1) m
解析 (1)沿+x方向射入磁场的粒子进入电场后,速度减小到0,粒子一定是从如图的P点射出磁场,逆着电场线运动,所以粒子在磁场中做圆周运动的半径
r=R=0.5 m
根据Bqv=,得
B=,代入数据得B=0.2 T。
(2)粒子返回磁场后,经磁场偏转后从N点射出磁场,MN为直径,粒子在磁场中的路程为二分之一圆周长s1=πR
设在电场中的路程为s2,根据动能定理得
Eq=mv2,s2=
总路程s=s1+s2,联立并代入数据得s=(0.5π+1) m。
考点一 带电粒子在组合场中的运动
1.组合场:电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现。不同的磁场区域组合在一起也叫组合场。
2.分析思路
(1)划分过程:将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。
(2)找关键:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键。
(3)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题。
3.组合场中的两种典型偏转
(2017·天津高考)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问:
(1)粒子到达O点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比。
解析 (1)在电场中,粒子做类平抛运动,设Q点到x轴距离为L,到y轴距离为2L,粒子的加速度为a,运动时间为t,有
2L=v0t①
L=at2②
设粒子到达O点时沿y轴方向的分速度为vy
vy=at③
设粒子到达O点时速度方向与x轴正方向夹角为α,有
tanα=④
联立①②③④式得
α=45°⑤
即粒子到达O点时速度方向与x轴正方向成45°角斜向上。
设粒子到达O点时速度大小为v,由运动的合成有
v= ⑥
联立①②③⑥式得
v=v0⑦
(2)设电场强度为E,粒子所带电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得
F=ma⑧
又F=qE⑨
设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有
qvB=m⑩
由几何关系可知
R=L⑪
联立①②⑦⑧⑨⑩⑪式得
=。
答案 (1)v0,速度方向与x轴正方向成45°角斜向上
(2)
方法感悟
带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟磁偏转两种运动有效组合在一起。区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键。当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成;前后两段过程的联系是带电粒子在边界的速度,前一过程的末速度就是后一过程的初速度。
如图所示,一带电粒子垂直射入匀强电场,经电场偏转后从磁场的左边界上M点进入垂直纸面向外的匀强磁场中,最后从磁场的左边界上的N点离开磁场。已知带电粒子的比荷=3.2×109 C/kg,电场强度E=200 V/m,M、N间距MN=1 cm,金属板长L=25 cm,粒子的初速度v0=4×105 m/s,带电粒子的重力忽略不计,求:
(1)粒子射出电场时的运动方向与初速度v0的夹角θ;
(2)磁感应强度B的大小。
答案 (1)45° (2)2.5×10-2 T
解析 (1)由牛顿第二定律有qE=ma
粒子在电场中水平方向做匀速直线运动,
L=v0t
粒子在竖直方向做初速度为零的匀加速运动,射出电场时的竖直分速度vy=at
速度偏转角的正切值tanθ=
由以上各式代入数据解得θ=45°。
(2)粒子射出电场时的速度大小为:
v=
在磁场中洛伦兹力提供向心力:
Bqv=m
由几何关系得MN=r
代入数据解得B=2.5×10-2 T。
考点二 带电粒子在复合场中的运动
1.复合场存在形式有以下三种
(1)洛伦兹力、重力并存
①若重力和洛伦兹力平衡,则带电体做匀速直线运动。
②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,只有重力做功,故机械能守恒,由此可求解问题。
(2)静电力、洛伦兹力并存(不计重力的微观粒子)
①若静电力和洛伦兹力平衡,则带电体做匀速直线运动。
②若静电力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题。
(3)静电力、洛伦兹力、重力并存
①若三力平衡,一定做匀速直线运动。
②若重力与静电力平衡,一定做匀速圆周运动。
③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题。
2.带电粒子在叠加场中有约束情况下的运动
带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解。
3.带电粒子在复合场中运动的分析方法
如图所示,区域Ⅰ内有与水平方向成45°角的匀强电场,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场和匀强电场,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下。一质量为m、电荷量为q的微粒在区域Ⅰ左边界的P点由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g,求:
(1)区域Ⅰ和区域Ⅱ内匀强电场的电场强度E1、E2的大小;
(2)区域Ⅱ内匀强磁场的磁感应强度B的大小;
(3)微粒从P运动到Q的时间。
解析 (1)微粒在区域Ⅰ内水平向右做直线运动,则在竖直方向上,有
qE1sin45°=mg
解得E1=
微粒在区域Ⅱ内做匀速圆周运动,则在竖直方向上,有
mg=qE2
解得E2=。
(2)设微粒在区域Ⅰ内水平向右做直线运动时加速度为a,离开区域Ⅰ时速度为v,在区域Ⅱ内做匀速圆周运动的轨道半径为R,则
a==g
v2=2ad1
Rsin60°=d2
qvB=m
解得B= 。
(3)微粒在区域Ⅰ内做匀加速直线运动,t1=
在区域Ⅱ内做匀速圆周运动的圆心角为60°,
而T=
则t2==
解得t=t1+t2=+ 。
答案 (1) (2)
(3) +
方法感悟
关于是否考虑粒子重力的三种情况
(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与静电力或磁场力相比太小,可以忽略;而对于一些宏观带电小物体,如带电小球、液滴、尘埃等一般应当考虑其重力。
(2)在题目中有明确说明是否要考虑重力的,按题目要求处理。
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C。在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h(h=0.4 m)的区域有磁感应强度大小也为B的垂直于纸面向里的匀强磁场。一个电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限。已知重力加速度g取10 m/s2。
(1)求油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;
(2)求油滴在P点得到的初速度大小;
(3)求油滴在第一象限运动的时间。
答案 (1)1∶1∶ 负电荷 (2)4 m/s (3)0.828 s
解析 (1)对油滴受力分析,如图所示,可知油滴带负电荷。
设油滴质量为m,由平衡条件得
mg∶qE∶F=1∶1∶。
(2)由第(1)问得
F=qvB=qE
解得v==4 m/s。
(3)进入第一象限,电场力和重力大小相等、方向相反,油滴受力平衡,油滴先做匀速直线运动,进入y>h的区域后做匀速圆周运动,轨迹如图所示,最后从x轴上的N点离开第一象限。
油滴由O到A做匀速直线运动的位移为
x1==h
重力与电场力平衡,有mg=Eq
其运动时间t1==0.1 s
由几何关系和圆周运动的周期公式T=知,油滴由A到C做圆周运动的时间t2=T=0.628 s
由对称性知油滴从C到N运动的时间t3=t1
油滴在第一象限运动的总时间t=t1+t2+t3=2×0.1 s+0.628 s=0.828 s。
考点三 带电粒子在交变电磁场中的运动
1.带电粒子在交变电、磁场中的运动是指电场、磁场发生周期性变化,要仔细分析并确定各场的变化特点及相应的时间,其变化周期一般与粒子在电场或磁场中的运动周期有一定的对应关系,应抓住变化周期与运动周期之间的联系作为解题的突破口。
2.解决带电粒子在交变电磁场中的运动问题的基本思路
如图a所示的xOy平面处于变化的匀强电场和匀强磁场中,电场强度E和磁感应强度B随时间做周期性变化的图象如图b所示,y轴正方向为E的正方向,垂直于纸面向里为B的正方向。t=0时刻,带负电粒子P(重力不计)由原点O以速度v0沿y轴正方向射出,它恰能沿一定轨道做周期性运动。v0、E0和t0为已知量,图b中=,在0~t0时间内粒子P第一次离x轴最远时的坐标为。求:
(1)粒子P的比荷;
(2)t=2t0时刻粒子P的位置;
(3)带电粒子在运动中距离原点O的最远距离L。
解析 (1)0~t0时间内粒子P在匀强磁场中做匀速圆周运动,当粒子所在位置的纵、横坐标相等时,粒子在磁场中恰好运动圆周,所以粒子P第一次离x轴的最远距离等于轨道半径R,即R=,①
又qv0B0=,②
代入=
解得=③
(2)设粒子P在磁场中运动的周期为T,则
T=,④
联立①④解得T=4t0,⑤
即粒子P运动圆周运动后磁场变为电场,粒子以速度v0垂直电场方向进入电场后做类平抛运动,设t0~2t0时间内水平位移和竖直位移分别为x1、y1,则
x1=v0t0,⑥
y1=at,⑦
其中加速度a=⑧
由③⑦⑧解得y1==R,因此t=2t0时刻粒子P的位置坐标为,如图中的b点所示。
(3)分析知,粒子P在2t0~3t0时间内,电场力产生的加速度方向沿y轴正方向,由对称关系知,在3t0时刻速度方向沿x轴正方向,水平位移x2=x1=v0t0,竖直位移y2=y1=R;在3t0~5t0时间内粒子P沿逆时针方向做匀速圆周运动,往复运动轨迹如图所示,由图可知,带电粒子在运动中距原点O的最远距离L即O、d间的距离,
L=2R+2x1,⑨
解得L=2v0t0。
答案 (1) (2) (3)2v0t0
方法感悟
认真阅读题目、分析题意、搞清题述物理状态及过程,并用简图(示意图、运动轨迹图、受力分析图、等效图等)将这些状态及过程表示出来,以展示题述物理情境、物理模型,使物理过程更为直观、物理特征更加明显,进而快速简便解题。
(2018·合肥模拟)如图甲所示,带正电粒子以水平速度v0从平行金属板MN间沿中线OO′连续射入电场中。MN板间接有如图乙所示的随时间t变化的电压UMN,两板间电场可看做是均匀的,且两板外无电场。紧邻金属板右侧有垂直纸面向里的匀强磁场B,分界线为CD,EF为屏幕。金属板间距为d,长度为l,磁场的宽度为d。已知:B=5×10-3 T,l=d=0.2 m,每个带正电粒子的速度v0=105 m/s,比荷为=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。试求:
(1)带电粒子进入磁场做圆周运动的最小半径;
(2)带电粒子射出电场时的最大速度;
(3)带电粒子打在屏幕上的范围。
答案 (1)0.2 m (2)1.414×105 m/s
(3)O′上方0.2 m到O′下方0.18 m的范围内
解析 (1)t=0时刻射入电场的带电粒子不被加速,进入磁场做圆周运动的半径最小。
粒子在磁场中运动时qv0B=
则带电粒子进入磁场做圆周运动的最小半径
rmin== m=0.2 m,其运动的径迹如图中曲线Ⅰ所示。
(2)设两板间电压为U1时,带电粒子刚好从极板边缘射出电场,则有=at2=·2
代入数据,解得U1=100 V
在电压不高于100 V时,带电粒子才能从两板间射出电场,电压高于100 V时,带电粒子打在极板上,不能从两板间射出。带电粒子刚好从极板边缘射出电场时,速度最大,设最大速度为vmax,则有
mv=mv+q·
解得vmax=×105 m/s=1.414×105 m/s。
(3)由第(1)问计算可知,t=0时刻射入电场的粒子在磁场中做圆周运动的半径rmin=d=0.2 m,径迹恰与屏幕相切,设切点为E,E为带电粒子打在屏幕上的最高点,
则=rmin=0.2 m
带电粒子射出电场的速度最大时,在磁场中做圆周运动的半径最大,打在屏幕上的位置最低。
设带电粒子以最大速度射出电场进入磁场中做圆周运动的半径为rmax,打在屏幕上的位置为F,运动径迹如图中曲线Ⅱ所示。
qvmaxB=
则带电粒子进入磁场做圆周运动的最大半径
rmax== m= m
由数学知识可得运动径迹的圆心必落在屏幕上,如图中Q点所示,并且Q点必与M板在同一水平线上。则
== m=0.1 m
带电粒子打在屏幕上的最低点为F,则
=rmax-= m=0.18 m
即带电粒子打在屏幕上O′上方0.2 m到O′下方0.18 m的范围内。
课后作业
[巩固强化练]
1.(多选)一个重力忽略不计的带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域。设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示。在图所示的几种情况中,可能出现的是( )
答案 AD
解析 A、C选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A图中粒子应逆时针运动,故A正确;C图中粒子应顺时针运动,故C错误;同理可以判断D正确,B错误。
2.如图所示,一束正离子从S点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E和磁场B的方向可能是(不计离子重力及其间相互作用力)( )
A.E向下,B向上 B.E向下,B向下
C.E向上,B向下 D.E向上,B向上
答案 A
解析 离子打在第Ⅲ象限,相对于原点O向下运动和向外运动,所以E向下,根据左手定则可知B向上,故A正确。
3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨道半径为R。已知电场的电场强度为E,方向竖直向下;磁场的磁感应强度为B,方向垂直纸面向里,不计空气阻力,设重力加速度为g,则( )
A.液滴带正电
B.液滴荷质比=
C.液滴顺时针运动
D.液滴运动的速度大小v=
答案 C
解析 液滴在重力场、匀强电场和匀强磁场组成的复合场中做匀速圆周运动,可知,液滴受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知液滴带负电,故A错误;由mg=qE解得=,故B错误;磁场方向垂直纸面向里,洛伦兹力的方向始终指向圆心,由左手定则可判断液滴的运动方向为顺时针,故C正确;液滴在洛伦兹力的作用下做匀速圆周运动的半径为R=,联立各式得v=,故D错误。
4. (多选)如图所示为一个质量为m、电荷量为+q的圆环,可在竖直面内水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中(不计空气阻力)。现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度—时间图象可能是图中的( )
答案 AD
解析 由左手定则可知,圆环所受洛伦兹力竖直向上,如果恰好qv0B=mg,圆环与杆间无弹力,不受摩擦力,圆环将以v0做匀速直线运动,故A正确;如果qv0B
5. 如图所示,界面MN与水平地面之间有足够大的匀强磁场B和匀强电场E,磁感线和电场线都处在水平方向且互相垂直,E向右,B垂直纸面向里。在MN上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面。若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )
A.小球做匀变速曲线运动
B.小球的电势能保持不变
C.洛伦兹力对小球做正功
D.小球动能的增量等于其电势能和重力势能减少量的总和
答案 D
解析 带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,A错误;根据电势能公式Ep=qφ知只有带电小球竖直向下做直线运动时,电势能才保持不变,B错误;洛伦兹力的方向始终和速度方向垂直,所以洛伦兹力不做功,C错误;由动能定理可知:重力做正功,电场力也做正功,洛伦兹力不做功,它们的代数之和等于动能的增量,D正确。
6.如图所示,在x轴上方存在垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方存在垂直纸面向外的磁感应强度为的匀强磁场。一带负电的粒子从原点O以与x轴正方向成30°角斜向上射入磁场,且在x轴上方运动半径为R,则( )
A.粒子经偏转一定能回到原点O
B.粒子在x轴上方和下方两磁场中运动的轨迹半径之比为2∶1
C.粒子完成一次周期性运动的时间为
D.粒子第二次射入x轴上方磁场时,沿x轴前进3R
答案 D
解析 根据左手定则判断可知,粒子在第一象限和第四象限中所受的洛伦兹力方向不同,粒子在第一象限沿顺时针方向运动,而在第四象限沿逆时针方向运动,不可能回到原点O,故A错误;由r=,知粒子做圆周运动的轨迹半径与B成反比,则粒子在x轴上方和下方两磁场中运动的轨迹半径之比为1∶2,故B错误;粒子在第一象限内轨迹所对应的圆心角为60°,在第四象限内轨迹所对应的圆心角也为60°,粒子在第一象限做圆周运动的周期为T=,在一个周期内,粒子在第一象限运动的时间为t1=T=,同理,在第四象限运动的时间为t2=T′=·=,故粒子完成一次周期性运动的时间为t=t1+t2=,故C错误;根据几何知识得,粒子第二次射入x轴上方磁场时,沿x轴前进的距离为x=R+2R=3R,故D正确。
7.如图甲所示,两个平行正对的水平金属板XX′极板长L=0.2 m,板间距离d=0.2 m,在金属板右端竖直边界MN的右侧有一区域足够大的匀强磁场,磁感应强度B=5×10-3 T,方向垂直纸面向里。现将X′极板接地,X极板上电势φ随时间变化规律如图乙所示。现有带正电的粒子流以v0=105 m/s的速度沿水平中线OO′连续射入电场中,粒子的比荷=108 C/kg,重力可忽略不计,在每个粒子通过电场的极短时间内,电场可视为匀强电场(设两板外无电场)。求:
(1)带电粒子射出电场时的最大速率;
(2)粒子在磁场中运动的最长时间和最短时间之比;
(3)分别从O′点和距O′点下方=0.05 m处射入磁场的两个粒子,在MN上射出磁场时两出射点之间的距离。
答案 (1)×105 m/s (2)2∶1 (3)0.05 m
解析 (1)带电粒子在偏转电场中做类平抛运动,设所加电压为U1时,粒子从极板边缘射出:
水平方向:t==2×10-6 s
竖直方向:y=at2=,
其中a=,所以U1== V
当U> V时进入电场中的粒子将打到极板上,即在电压等于 V时进入的粒子射出电场时具有最大速率,
所以由动能定理得:q=mv-mv,
得:vt=×105 m/s。
(2)计算可得,从极板边缘射出的粒子射入磁场时的速度与水平方向的夹角为30°,从下极板边缘射出的粒子轨迹如图中a所示,磁场中轨迹所对的圆心角为240°,时间最长。
从上极板边缘射出的粒子轨迹如图中b所示,磁场中轨迹所对应的圆心角为120°,时间最短。
因为两粒子在磁场中运动的周期T=相同,所以粒子在磁场中运动的最长时间和最短时间之比为2∶1。
(3)如图所示,从O′点射入磁场的粒子速度为v0,它在磁场中的出射点与入射点间距为d1=2R1
又R1=,
所以d1=
设从距O′点下方=0.05 m处射入磁场的粒子速度与水平方向夹角为φ,
则它的速度为v2=,
它在磁场中的出射点与入射点间距为d2=2R2cosφ,
因为R2=,所以d2=。
所以两个粒子向上偏移的距离相等。
所以两粒子射出磁场的出射点间距仍为进入磁场时的间距,即=0.05 m。
8. 如图所示,在平面直角坐标系xOy中,第一象限内存在正交的匀强电场和匀强磁场,电场强度E1=40 N/C,方向沿y轴正方向;第四象限内存在一方向向左的匀强电场E2= N/C。一质量为m=2×10-3 kg带正电的小球,从点M(3.64 m,3.2 m)以v0=1 m/s的水平速度开始运动。已知小球在第一象限内做匀速圆周运动,从点P(2.04 m,0)进入第四象限后经过y轴上的点N(0,-2.28 m)(图中未标出)。(g取10 m/s2,sin37°=0.6,cos37°=0.8)求:
(1)匀强磁场的磁感应强度B;
(2)小球由P点运动至N点的时间。
答案 (1)2 T (2)0.6 s
解析 (1)由题意可知qE1=mg,得q=5×10-4 C
轨迹如图,Rcosθ=xM-xP,Rsinθ+R=yM
可得R=2 m,θ=37°
由qv0B=,得B=2 T。
(2)小球进入第四象限后受力分析如图,tanα==0.75即α=37°=θ。可知小球进入第四象限后所受电场力和重力的合力与速度方向垂直,则小球进入第四象限后做类平抛运动。
由几何关系可得lNQ=0.6 m
由lNQ=v0t,解得t=0.6 s。
[真题模拟练]
9.(2018·北京高考)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是( )
A.磁场和电场的方向 B.磁场和电场的强弱
C.粒子的电性和电量 D.粒子入射时的速度
答案 C
解析 由题可知,当带电粒子在复合场内做匀速直线运动时,即有Eq=qvB,则v=,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意需要对磁场与电场的方向以及强弱程度、粒子入射时速度都有要求,但是对粒子的电性和电量无要求,故C正确,A、B、D错误。
10.(2017·全国卷Ⅰ) 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里。三个带正电的微粒a、b、c电荷量相等,质量分别为ma、mb、mc。已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动。下列选项正确的是( )
A.ma>mb>mc B.mb>ma>mc
C.mc>ma>mb D.mc>mb>ma
答案 B
解析 设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即
mag=qE①
b在纸面内向右做匀速直线运动,三力平衡,则
mbg=qE+qvbB②
c在纸面内向左做匀速直线运动,三力平衡,则
mcg+qvcB=qE③
比较①②③式得:mb>ma>mc,选项B正确。
11.(2018·唐山第一学期统考) (多选)如图所示,M、N为两个同心金属圆环,半径分别为R1和R2,两圆环之间存在着沿金属环半径方向的电场,N环内存在着垂直于环面向外的匀强磁场,磁感应强度为B,N环上有均匀分布的6个小孔,从M环的内侧边缘由静止释放一质量为m,电荷量为+q的粒子(不计重力),经电场加速后通过小孔射入磁场,经过一段时间,粒子再次回到出发点,全程与金属环无碰撞。则M、N间电压U满足的条件是( )
A.U= B.U=
C.U= D.U=
答案 AC
解析 带电粒子由M内侧边缘运动到N环,由动能定理有qU=mv2,带电粒子进入N环内磁场,与金属环无碰撞,故粒子进入磁场后,应偏转或离开磁场,由几何关系可知,轨迹半径为r=R2tan=R2或r=R2tan=,则根据r=,联立解得U=或U=,选项A、C正确。
12.(2018·全国卷Ⅱ) 一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。
(1)定性画出该粒子在电磁场中运动的轨迹;
(2)求该粒子从M点射入时速度的大小;
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。
答案 (1)轨迹见解析 (2)
(3)
解析 (1)粒子运动的轨迹如图a所示。(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)
(2)粒子从电场下边界入射后在电场中做类平抛运动。设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图b),速度沿电场方向的分量为v1,根据牛顿第二定律有qE=ma①
式中q和m分别为粒子的电荷量和质量,由运动学公式有
v1=at②
l′=v0t③
v1=vcosθ④
粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB=⑤
由几何关系得l=2Rcosθ⑥
联立①②③④⑤⑥式得v0=⑦
(3)由运动学公式和题给数据得v1=v0cot⑧
联立①②③⑦⑧式得=⑨
设粒子由M点运动到N点所用的时间为t′,
则t′=2t+T⑩
式中T是粒子在磁场中做匀速圆周运动的周期,
T=⑪
由③⑦⑨⑩⑪式得t′=。
13.(2018·全国卷Ⅰ) 如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核H和一个氘核H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。H的质量为m,电荷量为q。不计重力。求:
(1)H第一次进入磁场的位置到原点O的距离;
(2)磁场的磁感应强度大小;
(3)H第一次离开磁场的位置到原点O的距离。
答案 (1)h (2) (3)(-1)h
解析 (1)H在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示。设H在电场中的加速度大小为a1,初速度大小为v1,它在电场中的运动时间为t1,第一次进入磁场的位置到原点O的距离为s1。由运动学公式有
s1=v1t1①
h=a1t②
由题给条件,H进入磁场时速度的方向与x轴正方向夹角θ1=60°。H进入磁场时速度的y分量的大小为a1t1=v1tanθ1③
联立以上各式得s1=h④
(2)H在电场中运动时,由牛顿第二定律有qE=ma1⑤
设H进入磁场时速度的大小为v1′,由速度合成法则有
v1′=⑥
设磁感应强度大小为B,H在磁场中运动的圆轨道半径为R1,由洛伦兹力公式和牛顿第二定律有
qv1′B=⑦
由几何关系得s1=2R1sinθ1⑧
联立以上各式得B= ⑨
(3)设H在电场中沿x轴正方向射出的速度大小为v2,在电场中的加速度大小为a2,由题给条件得
(2m)v=mv⑩
由牛顿第二定律有qE=2ma2⑪
设H第一次射入磁场时的速度大小为v2′,速度的方向与x轴正方向夹角为θ2,入射点到原点的距离为s2,在电场中运动的时间为t2。由运动学公式有
s2=v2t2⑫
h=a2t⑬
v2′=⑭
sinθ2=⑮
联立以上各式得s2=s1,θ2=θ1,v2′=v1′⑯
设H在磁场中做圆周运动的半径为R2,由⑦⑯式及粒子在匀强磁场中做圆周运动的半径公式得
R2==R1⑰
所以出射点在原点左侧。设H进入磁场的入射点到第一次离开磁场的出射点的距离为s2′,由几何关系有
s2′=2R2sinθ2⑱
联立④⑧⑯⑰⑱式得,H第一次离开磁场时的位置到原点O的距离为s2′-s2=(-1)h。
14.(2017·全国卷Ⅲ) 如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离。
答案 (1) (2)
解析 (1)在匀强磁场中,带电粒子做圆周运动,设在x≥0区域,圆周半径为R1;在x<0区域,圆周半径为R2,由洛伦兹力公式及牛顿第二定律得
qB0v0=m①
qλB0v0=m②
粒子速度方向转过180°时,所需时间t1为t1=③
粒子再转过180°时,所需时间t2为t2=④
联立①②③④式得,所求时间为
t0=t1+t2=⑤
(2)由几何关系及①②式得,所求距离为
d0=2(R1-R2)=。
15.(2018·开封模拟)如图所示,真空中有一以O点为圆心的圆形匀强磁场区域,半径为R=0.5 m,磁场垂直纸面向里。在y>R的区域存在沿-y方向的匀强电场,电场强度为E=1.0×105 V/m。在M点有一正粒子以速率v=1.0×106 m/s沿+x方向射入磁场,粒子穿出磁场进入电场,速度减小到0后又返回磁场,最终又从磁场离开。已知粒子的比荷为=1.0×107 C/kg,粒子重力不计。
(1)求圆形磁场区域磁感应强度的大小;
(2)求沿+x方向射入磁场的粒子,从进入磁场到再次穿出磁场所走过的路程。
答案 (1)0.2 T (2)(0.5π+1) m
解析 (1)沿+x方向射入磁场的粒子进入电场后,速度减小到0,粒子一定是从如图的P点射出磁场,逆着电场线运动,所以粒子在磁场中做圆周运动的半径
r=R=0.5 m
根据Bqv=,得
B=,代入数据得B=0.2 T。
(2)粒子返回磁场后,经磁场偏转后从N点射出磁场,MN为直径,粒子在磁场中的路程为二分之一圆周长s1=πR
设在电场中的路程为s2,根据动能定理得
Eq=mv2,s2=
总路程s=s1+s2,联立并代入数据得s=(0.5π+1) m。
相关资料
更多