年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2020高考数学理科大一轮复习导学案:第八章平面解析几何8.6

    2020高考数学理科大一轮复习导学案:第八章平面解析几何8.6第1页
    2020高考数学理科大一轮复习导学案:第八章平面解析几何8.6第2页
    2020高考数学理科大一轮复习导学案:第八章平面解析几何8.6第3页
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020高考数学理科大一轮复习导学案:第八章平面解析几何8.6

    展开

    
     

    知识点一 双曲线的定义
    平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(2a0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为(  )
    A.-=1 B.-=1
    C.-=1 D.-=1
    【解析】 解法1:因为直线AB经过双曲线的右焦点,所以不妨取A(c,),B(c,-),取双曲线的一条渐近线为直线bx-ay=0,由点到直线的距离公式可得d1==,d2==,因为d1+d2=6,所以+=6,所以2b=6,得b=3.因为双曲线-=1(a>0,b>0)的离心率为2,所以=2,所以=4,所以=4,解得a2=3,所以双曲线的方程为-=1,故选C.
    解法2:由d1+d2=6,得双曲线的右焦点到渐近线的距离为3,所以b=3.因为双曲线-=1(a>0,b>0)的离心率为2,所以=2,所以=4,所以=4,解得a2=3,所以双曲线的方程为-=1,故选C.
    【答案】 C



     
    求双曲线标准方程的一般方法
    (1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线-=1有相同渐近线时,可设所求双曲线方程为-=λ(λ≠0).
    (2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.



    (1)(2019·福州高三考试)已知双曲线C的两个焦点F1,F2都在x轴上,对称中心为原点O,离心率为.若点M在C上,且MF1⊥MF2,M到原点的距离为,则C的方程为( C )
    A.-=1 B.-=1
    C.x2-=1 D.y2-=1
    (2)已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为-y2=1.
    解析:(1)由题意可知,OM为Rt△MF1F2斜边上的中线,所以|OM|=|F1F2|=c.由M到原点的距离为,得c=,又e==,所以a=1,所以b2=c2-a2=3-1=2.故双曲线C的方程为x2-=1.故选C.
    (2)法1:∵双曲线的渐近线方程为y=±x,∴可设双曲线的方程为x2-4y2=λ(λ≠0).∵双曲线过点(4,),∴λ=16-4×()2=4,∴双曲线的标准方程为-y2=1.
    法2:∵渐近线y=x过点(4,2),而0,b>0).由已知条件可得解得∴双曲线的标准方程为-y2=1.
    考向三 双曲线的几何性质
    方向1 渐近线问题
    【例3】 (2018·全国卷Ⅰ)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=(  )
    A. B.3
    C.2 D.4
    【解析】 因为双曲线-y2=1的渐近线方程为y=±x,所以∠MON=60°.不妨设过点F的直线与直线y=x交于点M,由△OMN为直角三角形,不妨设∠OMN=90°,则∠MFO=60°,又直线MN过点F(2,0),所以直线MN的方程为y=-(x-2),由得所以M(,),所以|OM|==,所以|MN|=|OM|=3,故选B.
    【答案】 B
    方向2 离心率问题
    【例4】 (2018·全国卷Ⅲ)设F1,F2是双曲线C:-=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为(  )
    A. B.2
    C. D.
    【解析】 不妨设一条渐近线的方程为y=x,则F2到y=x的距离d==b,在Rt△F2PO中,|F2O|=c,所以|PO|=a,所以|PF1|=a,又|F1O|=c,所以在△F1PO与Rt△F2PO中,根据余弦定理得cos∠POF1==-cos∠POF2=-,即3a2+c2-(a)2=0,得3a2=c2,所以e==.
    【答案】 C
    方向3 最值与范围问题
    【例5】 已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·0)的渐近线与圆x2+(y-4)2=1相切,则双曲线的离心率为( D )
    A.2 B.
    C.3 D.4
    解析:因为双曲线-=1(a>0,b>0)的渐近线方程为bx±ay=0.依题意,直线bx±ay=0与圆x2+(y-4)2=1相切,则圆心(0,4)到直线bx±ay=0的距离d==1,所以=1,所以双曲线离心率e==4.
    3.(方向3)中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=3,若椭圆C1的离心率e1∈,则双曲线的离心率e2的范围是( C )
    A. B.
    C. D.(2,3)
    解析:设椭圆方程为:+=1(a>b>0),由题意有:|PF2|=3=2a-|PF1|=2a-2c,设双曲线方程为-=1(m>0,n>0),同理可得2m=|PF1|-|PF2|=2c-(2a-2c)=4c-2a,所以m=2c-a,又e2===,因为e1∈,所以∈,所以e2∈.

     
    经久不衰的高考热点——离心率问题
    离心率是圆锥曲线的重要几何性质,是高考重点考查的一个知识点.这类问题一般有两类:一类是根据一定的条件求圆锥曲线的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表示,转化为关于离心率e的关系式,这是化解有关椭圆或双曲线的离心率问题难点的根本方法.
    一、利用定义求离心率
    典例1 (2019·广州高三调研测试)在直角坐标系xOy中,设F为双曲线C:-=1(a>0,b>0)的右焦点,P为双曲线C的右支上一点,且△OPF为正三角形,则双曲线C的离心率为(  )
    A. B.
    C.1+ D.2+
    【解题思路】 设F′为双曲线的左焦点,利用△OPF为正三角形求出|PO|=|PF|=c,∠POF′=120°,利用双曲线的定义得到|PF′|=2a+c,最后在△PF′O中由余弦定理可得的值.
    【解析】 设F′为双曲线的左焦点,|F′F|=2c,依题意可得|PO|=|PF|=c,连接PF′,由双曲线的定义可得|PF′|-
    |PF|=2a,故|PF′|=2a+c,在△PF′O中,∠POF′=120°,由余弦定理可得cos120°=,化简可得c2-2ac-2a2=0,即()2-2×-2=0,解得=1+或=1-(不合题意,舍去),故双曲线的离心率e=1+,故选C.
    【答案】 C
    二、利用平面几何性质求离心率
    典例2 (2018·北京卷)已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为________;双曲线N的离心率为________.
    【解析】 如图,设椭圆的右焦点为F(c,0),双曲线N的渐近线与椭圆M在第一象限内的交点为A,由题意可知A(,),由点A在椭圆M上得,+=1,∴b2c2+3a2c2=4a2b2,∵b2=a2-c2,∴(a2-c2)c2+3a2c2=4a2(a2-c2),∴4a4-8a2c2+c4=0,∴e-8e+4=0,∴e=4±2,∴e椭=+1(舍去)或e椭=-1,∴椭圆M的离心率为-1,

    ∵双曲线的渐近线过点A(,),
    ∴渐近线方程为y=x,
    ∴=,故双曲线的离心率e双==2.
    【答案】 -1 2

    三、利用椭圆或双曲线的性质建立方程(或不等式)求离心率的值(或取值范围)
    典例3 已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,点P在椭圆上且满足·=c2,则该椭圆离心率的取值范围是(  )
    A. B.
    C. D.
    【解析】 设P(x,y),则+=1(a>b>0),y2=b2-x2,-a≤x≤a,=(-c-x,-y),=(c-x,-y).所以·=x2-c2+y2=x2+b2-c2=x2+b2-c2.因为-a≤x≤a,所以b2-c2≤·≤b2.所以b2-c2≤c2≤b2,所以2c2≤a2≤3c2,所以≤≤.故选B.
    【答案】 B

    (1)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( A )
    A.    B.    C.    D.
    (2)过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( B )
    A.    B.    C.    D.
    解析:(1)由题意,不妨设直线l的方程为y=k(x+a),k>0,分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka.设OE的中点为G,由△OBG∽△FBM,得=,即=,整理,得=,故椭圆的离心率e=.故选A.
    (2)由题意,可设P.因为在Rt△PF1F2中,|PF1|=,|F1F2|=2c,∠F1PF2=60°,所以==.因为b2=a2-c2,所以c2+2ac-a2=0,即e2+2e-=0,解得e=或e=-.又e∈(0,1),所以e=.故选B.

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map