终身会员
搜索
    上传资料 赚现金

    2020版新一线高考理科数学(北师大版)一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值

    立即下载
    加入资料篮
    2020版新一线高考理科数学(北师大版)一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值第1页
    2020版新一线高考理科数学(北师大版)一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值第2页
    2020版新一线高考理科数学(北师大版)一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版新一线高考理科数学(北师大版)一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值

    展开

    
    第2课时 导数与函数的极值、最值

    利用导数解决函数的极值问题

    ►考法1 根据函数图像判断函数极值的情况
    【例1】 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是(  )
    A.函数f(x)有极大值f(2)和极小值f(1)
    B.函数f(x)有极大值f(-2)和极小值f(1)
    C.函数f(x)有极大值f(2)和极小值f(-2)
    D.函数f(x)有极大值f(-2)和极小值f(2)
    D [由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.]
    ►考法2 求已知函数的极值
    【例2】 已知函数f(x)=(x-2)(ex-ax),当a>0时,讨论f(x)的极值情况.
    [解] ∵f′(x)=(ex-ax)+(x-2)(ex-a)
    =(x-1)(ex-2a),
    ∵a>0,由f′(x)=0得x=1或x=ln 2a.
    ①当a=时,f′(x)=(x-1)(ex-e)≥0,
    ∴f(x)递增,故f(x)无极值.
    ②当0<a<时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表:
    x
    (-∞,ln 2a)
    ln 2a
    (ln 2a,1)
    1
    (1,+∞)
    f′(x)

    0

    0

    f(x)

    极大值

    极小值

    故f(x)有极大值f(ln 2a)=-a(ln 2a-2)2,极小值f(1)=a-e.
    ③当a>时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表:
    x
    (-∞,1)
    1
    (1,ln 2a)
    ln 2a
    (ln 2a,+∞)
    f′(x)

    0

    0

    f(x)

    极大值

    极小值

    故f(x)有极大值f(1)=a-e,极小值f(ln 2a)=-a(ln 2a-2)2.
    综上,当0<a<时,f(x)有极大值-a(ln 2a-2)2,极小值a-e;
    当a=时,f(x)无极值;
    当a>时,f(x)有极大值a-e,极小值-a(ln 2a-2)2.
    ►考法3 已知函数极值求参数的值或范围
    【例3】 (1)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b=________.
    (2)若函数f(x)=ex-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为(  )
    A.(-e2,-e)       B.
    C. D.(-∞,-e)
    (1)-7 (2)D [(1)由题意得f′(x)=3x2+6ax+b,则
    解得或
    经检验当a=1,b=3时,函数f(x)在x=-1处无法取得极值,而a=2,b=9满足题意,故a-b=-7.
    (2)∵f′(x)=ex-+2a,(x>0)
    ∴由f′(x)=0得a=.
    令g(x)=(x>0).
    由题意可知g(x)=a在(0,+∞)上恰有两个零点.
    又g′(x)=-(x>0),
    由g′(x)>0得0<x<1,且x≠.
    由g′(x)<0得x>1.
    ∴函数g(x)在,上递增,在(1,+∞)上递减.
    又g(0)=0,g(1)=-e,
    结合图形(图略)可知a∈(-∞,-e),故选 D.]
    [规律方法] 1.利用导数研究函数极值问题的一般流程

    2.已知函数极值点和极值求参数的两个要领
    (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解.
    (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.
    (1)已知函数f(x)=x(x-c)2在x=2处有极大值,则实数c的值为(  )
    A.2或6 B.2
    C. D.6
    (2)(2019·广东五校联考)已知函数f(x)=x(ln x-ax)有极值,则实数a的取值范围是(  )
    A. B.
    C. D.
    (1)D (2)A [(1)法一:f′(x)=(x-c)(3x-c),当f′(x)=0时,x1=,x2=c.
    因为极大值点是x=2,
    所以c>0,并且<c.
    当x∈时,f′(x)>0,
    当x∈时,f′(x)<0,
    当x∈(c,+∞)时,f′(x)>0,
    所以x=是极大值点,=2,
    解得c=6.故选D.
    法二:因为f′(x)=(x-c)(3x-c).
    又因为f(x)在x=2处取极值,
    所以f′(2)=0,即(2-c)(6-c)=0.
    所以c=2或c=6.
    当c=6时,f′(x)=3(x-2)(x-6),易知x∈(-∞,2)和x∈(6,+∞)时,f′(x)>0,函数f(x)是增函数,x∈(2,6)时,f′(x)<0,函数f(x)是减函数,此时x=2为极大值点.
    当c=2时,f′(x)=3(x-2),易知x∈和x∈(2,+∞)时,f′(x)>0,函数f(x)是增函数,
    x∈时,f′(x)<0,函数f(x)是减函数,此时x=2是极小值点.
    因此c=6.故选 D.
    (2)f(x)=xln x-ax2(x>0),f′(x)=ln x+1-2ax.
    令g(x)=ln x+1-2ax,
    则g′(x)=-2a=.
    ∵函数f(x)=x(ln x-ax)有极值,
    ∴g(x)=0在(0,+∞)上有实根.
    当a≤0时,g′(x)>0,函数g(x)在(0,+∞)上递增,当x趋向于0时,g(x)趋向于-∞,当x趋向于+∞时,g(x)趋向于+∞,故存在x0∈(0,+∞),使得f(x)在(0,x0)上递减,在(x0,+∞)上递增,故f(x)存在极小值f(x0),符合题意.
    当a>0时,令g′(x)=0,得x=.
    当0<x<时,g′(x)>0,函数g(x)递增;
    当x>时,g′(x)<0,函数g(x)递减,
    ∴x=时,函数g(x)取得极大值.
    ∵当x趋向于0和x趋向于+∞时,均有g(x)趋向于-∞,要使g(x)=0在(0,+∞)上有实根,且f(x)有极值,必须g=ln >0,解得0<a<.
    综上可知,实数a的取值范围是,故选A.]
    利用导数解决函数的最值问题

    【例4】 已知函数f(x)=ln x-ax(a∈R).
    (1)求函数f(x)的单调区间;
    (2)当a>0时,求函数f(x)在[1,2]上的最小值.
    [解] (1)f′(x)=-a(x>0),
    ①当a≤0时,f′(x)=-a>0,即函数f(x)的递增区间为(0,+∞).
    ②当a>0时,令f′(x)=-a=0,可得x=,
    当0<x<时,f′(x)=>0;
    当x>时,f′(x)=<0,
    故函数f(x)的递增区间为,
    递减区间为.
    综上可知,当a≤0时,函数f(x)的递增区间为(0,+∞);
    当a>0时,函数f(x)的递增区间为,
    递减区间为.
    (2)①当0<≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,所以f(x)的最小值是f(2)=ln 2-2a.
    ②当≥2,即0<a≤时,函数f(x)在区间[1,2]上是增函数,所以f(x)的最小值是f(1)=-a.
    ③当1<<2,即<a<1时,函数f(x)在上是增函数,在上是减函数.又f(2)-f(1)=ln 2-a,
    所以当<a<ln 2时,最小值是f(1)=-a;
    当ln 2≤a<1时,最小值为f(2)=ln 2-2a.
    综上可知,
    当0<a<ln 2时,函数f(x)的最小值是f(1)=-a;
    当a≥ln 2时,函数f(x)的最小值是f(2)=ln 2-2a.
    [规律方法] 求函数f(x)在[a,b]上的最大值、最小值的步骤
    (1)求函数在(a,b)内的极值.
    (2)求函数在区间端点的函数值f(a),f(b).
    (3)将函数f(x)的极值与f(a),f(b)比较,其中最大的为最大值,最小的为最小值.
    (2017·北京高考)已知函数f(x)=excos x-x.
    (1)求曲线y=f(x)在点(0,f(0))处的切线方程;
    (2)求函数f(x)在区间上的最大值和最小值.
    [解] (1)因为f(x)=excos x-x,
    所以f′(x)=ex(cos x-sin x)-1,f′(0)=0.
    又因为f(0)=1,
    所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
    (2)设h(x)=ex(cos x-sin x)-1,则h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
    当x∈时,h′(x)

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map