所属成套资源:2021高考数学浙江省一轮学案
2021届浙江省高考数学一轮学案:第八章第6节 空间向量及其运算
展开
第6节 空间向量及其运算
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示;2.了解空间向量的线性运算及其坐标表示;3.了解空间向量的数量积及其坐标表示;4.掌握空间两点间的距离公式,会求向量的长度、两向量的夹角.
知 识 梳 理
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a(a≠0)与b共线的充要条件是存在实数λ,使得b=λa.
推论 如图所示,点P在l上的充要条件是=+ta ①
其中a叫直线l的方向向量,t∈R,在l上取=a,则①可化为=+t或=(1-t)+t.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量,推论的表达式为=x+y或对空间任意一点O,有=+x+y或=x+y+z,其中x+y+z=1.
(3)空间向量基本定理
如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
5.空间两点间的距离公式
空间中点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=.
[常用结论与易错提醒]
1.a·b=0⇔a=0或b=0或〈a,b〉=.
2.a·b0不等价为〈a,b〉为锐角,因为〈a,b〉可能为0°.
诊 断 自 测
1.判断下列说法的正误.
(1)空间中任意两非零向量a,b共面.( )
(2)对任意两个空间向量a,b,若a·b=0,则a⊥b.( )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(4)若a·b<0,则〈a,b〉是钝角.( )
解析 对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若〈a,b〉=π,则a·b