2021版新高考数学(文科)一轮复习教师用书:第2章第9节 函数与方程
展开第九节 函数与方程
[最新考纲] 结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.
1.函数的零点
(1)函数零点的定义
对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.
(2)三个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
| Δ>0 | Δ=0 | Δ<0 |
二次函数y=ax2+bx+c(a>0)的图象 | |||
与x轴的交点 | (x1,0),(x2,0) | (x1,0) | 无交点 |
零点个数 | 2 | 1 | 0 |
有关函数零点的三个结论
(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.
(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.
(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)函数的零点就是函数的图象与x轴的交点. ( )
(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0. ( )
(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点. ( )
(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点. ( )
[答案] (1)× (2)× (3)× (4)√
二、教材改编
1.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 124.4 | 33 | -74 | 24.5 | -36.7 | -123.6 |
则函数y=f(x)在区间[1,6]上的零点至少有( )
A.2个 B.3个
C.4个 D.5个
B [∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]内至少有3个零点.]
2.函数f(x)=ln x+2x-6的零点所在的区间是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
C [由题意得f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,
f(3)=ln 3+6-6=ln 3>0,
f(4)=ln 4+8-6=ln 4+2>0,
∴f(x)的零点所在的区间为(2,3).]
3.函数f(x)=ex+3x的零点个数是________.
1 [由已知得f′(x)=ex+3>0,所以f(x)在R上单调递增,又f(-1)=-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.]
4.函数f(x)=x-的零点个数为________.
1 [作函数y1=x和y2=的图象如图所示.
由图象知函数f(x)有1个零点.]
考点1 函数零点所在区间的判定
判断函数零点所在区间的方法
(1)解方程法,当对应方程易解时,可直接解方程;
(2)零点存在性定理;
(3)数形结合法,画出相应函数图象,观察与x轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断.
1.函数f(x)=ln x-的零点所在的区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
B [由题意知函数f(x)是增函数,因为f(1)<0,f(2)=ln 2-=ln 2-ln >0,所以函数f(x)的零点所在的区间是(1,2).故选B.]
2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
A [∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;
又函数f(x)是二次函数,最多有两个零点,
因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.]
3.已知函数f(x)=ln x+2x-6的零点在(k∈Z)内,那么k=________.
5 [∵f′(x)=+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上单调递增,且f=ln -1<0,f(3)=ln 3>0,∴f(x)的零点在内,则整数k=5.]
(1)f(a)·f(b)<0是连续函数y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
(2)若函数f(x)在[a,b]上是单调函数,且f(x)的图象连续不断,则f(a)·f(b)<0⇒函数f(x)在区间[a,b]上只有一个零点.
考点2 函数零点个数的判断
求函数零点个数的基本解法
(1)直接法,令f(x)=0,在定义域范围内有多少个解则有多少个零点;
(2)定理法,利用定理时往往还要结合函数的单调性、奇偶性等;
(3)图象法,一般是把函数分拆为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.
(1)(2019·全国卷Ⅲ)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( )
A.2 B.3
C.4 D.5
(2)函数f(x)=的零点个数为( )
A.0 B.1
C.2 D.3
(3)设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=ex+x-3,则f(x)的零点个数为( )
A.1 B.2
C.3 D.4
(1)B (2)D (3)C [(1)由f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x·(1-cos x)=0得sin x=0或cos x=1,∴x=kπ,k∈Z,又∵x∈[0,2π],∴x=0,π,2π,即零点有3个,故选B.
(2)依题意,在考虑x>0时可以画出函数y=ln x与y=x2-2x的图象(如图),可知两个函数的图象有两个交点,当x≤0时,函数f(x)=2x+1与x轴只有一个交点,综上,函数f(x)有3个零点.故选D.
(3)因为函数f(x)是定义域为R的奇函数,所以f(0)=0,即x=0是函数f(x)的1个零点.
当x>0时,令f(x)=ex+x-3=0,则ex=-x+3,分别画出函数y=ex和y=-x+3的图象,如图所示,两函数图象有1个交点,所以函数f(x)有1个零点.
根据对称性知,当x<0时,函数f(x)也有1个零点.综上所述,f(x)的零点个数为3.]
(1)利用函数的零点存在性定理时,不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(2)图象法求函数零点个数的关键是正确画出函数的图象.在画函数的图象时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制.
1.函数f(x)=2x|log0.5 x|-1的零点个数为( )
A.1 B.2
C.3 D.4
B [令f(x)=2x|log0.5x|-1=0,
可得|log0.5x|=.
设g(x)=|log0.5x|,h(x)=.
在同一坐标系下分别画出函数g(x),h(x)的图象,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.故选B.]
2.已知函数f(x)=若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为________.
3 [依题意得
由此解得
由g(x)=0得f(x)+x=0,
该方程等价于 ①
或 ②
解①得x=2,解②得x=-1或x=-2.因此,函数g(x)=f(x)+x的零点个数为3.]
考点3 函数零点的应用
根据函数零点的情况求参数的三种常用方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.
根据函数零点个数求参数
已知函数f(x)=|x2+3x|,x∈R,若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围是________.
(0,1)∪(9,+∞) [设y1=f(x)=|x2+3x|,y2=a|x-1|,在同一直角坐标系中作出y1=|x2+3x|,y2=a|x-1|的图象如图所示.
由图可知f(x)-a|x-1|=0有4个互异的实数根等价于y1=|x2+3x|与y2=a|x-1|的图象有4个不同的交点且4个交点的横坐标都小于1,
所以 有两组不同解,
消去y得x2+(3-a)x+a=0有两个不等实根,
所以Δ=(3-a)2-4a>0,即a2-10a+9>0,
解得a<1或a>9.
又由图象得a>0,∴0<a<1或a>9.]
由函数的零点个数求参数的值或范围的策略
已知函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图形一定要准确,这种数形结合的方法能够帮助我们直观解题.
根据函数有无零点求参数
已知函数f(x)=则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是________.
(-∞,0]∪(1,+∞) [函数g(x)=f(x)+x-m的零点就是方程f(x)+x=m的根,画出h(x)=f(x)+x=的大致图象(图略).
观察它与直线y=m的交点,得知当m≤0或m>1时,有交点,即函数g(x)=f(x)+x-m有零点.]
函数有无零点问题⇔函数图象与x轴有无公共点问题.
根据零点的范围求参数
若函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是________.
[依题意,结合函数f(x)的图象分析可知m需满足
即
解得<m<.]
此类问题多转化为讨论区间端点处函数值的符号求解.
1.函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是( )
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
C [因为f(x)在(0,+∞)上是增函数,则由题意得f(1)·f(2)=(0-a)(3-a)<0,解得0<a<3,故选C.]
2.已知函数f(x)=若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是________.
(-1,0) [关于x的方程f(x)=k有三个不同的实根,等价于函数y1=f(x)与函数y2=k的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k的取值范围是(-1,0).]