![2021版新高考数学(文科)一轮复习教师用书:第4章经典微课堂规范答题系列1:高考中的解三角形问题第1页](http://www.enxinlong.com/img-preview/3/3/5750391/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021高考数学文科人教A版一轮复习教师用书
2021版新高考数学(文科)一轮复习教师用书:第4章经典微课堂规范答题系列1:高考中的解三角形问题
展开[命题解读] 从近五年全国卷高考试题来看,解答题第17题交替考查解三角形与数列,本专题的热点题型有:一是考查解三角形;二是解三角形与三角恒等变换的交汇问题;三是平面几何图形中的度量问题;四是三角形中的最值(范围)问题.[典例示范] (本题满分12分)(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB①;(2)若DC=2,求BC②.[信息提取] 看到①想到△ADB;想到△ADB中已知哪些量;想到如何应用正、余弦定理解三角形.看到②想到△DBC;想到用余弦定理求BC.[规范解答] (1)在△ABD中,由正弦定理得=.由题设知,=,………………………………2分所以sin∠ADB=.……………………………………………3分由题设知,∠ADB<90°,所以cos∠ADB==.6分(2)由题设及(1)知,cos∠BDC=sin∠ADB=.……………8分在△BCD中,由余弦定理得BC2=BD2+DC2-2BD·DC·cos∠BDC=25+8-2×5×2×=25. …………………………………………………………11分所以BC=5.……………………………………………………12分[易错防范] 易错点防范措施想不到先求sin∠ADB,再计算cos∠ADB.同角三角函数的基本关系:sin2α+cos2α=1常作为隐含条件,必须熟记于心求不出cos∠BDC互余的两个角α,β满足sin α=cos β[通性通法] 求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边或角;二是注意大边对大角在解三角形中的应用.[规范特训] (2019·皖南八校联考)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知a+2b=2ccos A.(1)求角C;(2)已知△ABC的面积为,b=4,求边c的长.[解] (1)∵a+2b=2ccos A,∴由正弦定理得sin A+2sin B=2sin Ccos A,则sin A+2sin(A+C)=2sin Ccos A,化简得sin A+2sin Acos C=0.由0<A<π,得sin A>0,则cos C=-.由0<C<π,得C=.(2)△ABC的面积为absin C=.又b=4,sin C=,∴a=1.∴由余弦定理得c2=a2+b2-2abcos C=1+16-2×1×4×=21,∴c=.
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)