2021版新高考数学(理科)一轮复习教师用书:第6章【经典微课堂】——规范答题系列2 高考中的数列问题
展开[命题解读] 从近五年全国卷高考试题来看,数列解答题常以an,Sn的关系为切入点,以等差(等比)数列基础知识为依托,重点考查等差(等比)数列的判定与证明,考查数列的通项及前n项和的求法(以分组求和、裂项求和为主),考查函数与方程的思想及逻辑推理、数学运算的核心素养,且难度有所提升.
[典例示范] (本题满分12分)(2016·全国卷Ⅱ)Sn为等差数列{an}的前n项和,且a1=1,S7=28①.记bn=[lg an]②,其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.
(1)求b1,b11,b101;
(2)求数列{bn}的前1 000项和③.
[信息提取] 看到①想到等差数列的求和公式;
看到②想到等差数列的通项公式及对数的运算性质;
看到③想到数列的常见求和方法.
[规范解答] (1)设{an}的公差为d,S7=7a4=28,
所以a4=4,····································································· 2分
所以d==1,··························································· 4分
所以an=a1+(n-1)d=n. ····················································· 5分
所以b1=[lg a1]=[lg 1]=0,b11=[lg a11]=[lg 11]=1,b101=[lg a101]=[lg 101]=2. ······················································································ 6分
(2)记{bn}的前n项和为Tn,则T1 000=b1+b2+…+b1 000=[lg a1]+[lg a2]+…+[lg a1 000],
当0≤lg an<1时,n=1,2,…,9;····································· 7分
当1≤lg an<2时,n=10,11,…,99;································ 9分
当2≤lg an<3时n=100,101,…,999;······························ 11分
当lg an=3时,n=1 000,
所以T1 000=0×9+1×90+2×900+3×1=1 893. ····················· 12分
[易错防范]
易错点 | 防范措施 |
对[lg an]认识错误 | 先结合题设条件理解[x],再结合对数的运算性质求出b1,b11,b101 |
找不出[lg an]的规律求不出{bn}的前1 000项的和 | 结合(1)的结论,合情推理推出[lg an]的规律,并分类求出bn,最后利用分组求和求{bn}的前1 000项和 |
[通性通法] (1)等差(或等比)数列的通项公式、前n项和公式中有五个元素a1,d(或q),n,an,Sn,“知三求二”是等差(等比)的基本题型,通过解方程(组)的方法达到解题的目的.
(2)数列的求和问题常采用“公式法”“裂项相消法”等.
[规范特训] (2019·天津二模)已知数列{an}满足a1=2,(n+2)an=(n+1)an+1-2(n2+3n+2),设bn=.
(1)证明数列{bn}是等差数列;
(2)设=2n+1,求数列{cn}的前n项和Tn(n∈N*).
[解] (1)因为a1=2,所以b1==1.
将(n+2)an=(n+1)an+1-2(n2+3n+2)两边同时除以(n+1)(n+2)得:
=-2,∴-=2,即bn+1-bn=2.
∴数列{bn}是以1为首项,2为公差的等差数列.
(2)由(1)得bn=1+2(n-1)=2n-1.
∵=2n+1,∴cn=(2n+1)bn=(2n-1)·2n+2n-1.
设Pn=1×2+3×22+5×23+…+(2n-1)·2n,
2Pn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,
两式相减得:-Pn=2+2(22+23+…+2n)-(2n-1)·2n+1
=2+2×-(2n-1)·2n+1=-6-(2n-3)·2n+1.
化简得Pn=6+(2n-3)·2n+1.
设Sn=1+3+5+…+(2n-1)==n2,
∴Tn=Pn+Sn=6+(2n-3)·2n+1+n2.